539.3 Асимптотическая теория конструктивно-ортотропных пластин с двухпериодической структурой
doi: 10.18698/2309-3684-2014-1-3656
Предложена теория тонких конструктивно-ортотропных пластин, обладающих двухпериодической структурой, примером которых являются сотовые многослойные панели и подкрепленные пластины. Теория построена на основе уравнений об-щей трехмерной теории упругости путем с помощью асимптотических разложений по малому параметру, представляющему отношение толщины пластины к характерной длине, без введения каких-либо гипотез относительно характера распределения перемещений и напряжений по толщине. Сформулированы локальные задачи для нахождения напряжений во всех конструктивных элементах пластины. Показано, что полученные глобальные (осредненные по определенным правилам) уравнения теории пластин близки к уравнениям теории пластин Кирхгофа – Лява, но отличаются от них наличием третьего порядка производных от продольных перемещений. Предложенный метод позволяет вычислить все шесть компонент тензора напряжений, включая поперечные нормальные напряжения и напряжения межслойного сдвига, для этого необходимо численно решить локальные задачи до третьего приближения включительно. Приведен пример конечно-элементного решения локальных задач нулевого приближения для сотовой конструкции, который показал, что разработанный метод расчета пластин и его численная реализация достаточно эффективны, они позволяют проводить расчеты для сложных конструктивно-ортотропных пластин с сильно различающимися значениями упругих характеристик.
Димитриенко Ю. И., Губарева Е. А., Сборщиков С. В. Асимптотическая теория конструктивно-ортотропных пластин с двухпериодической структурой. Математическое моделирование и численные методы, 2014, №1 (1), c. 36-56
539.36 Асимптотическая теория многослойных тонких упругих пластин с проскальзыванием слоев
doi: 10.18698/2309-3684-2022-2-2862
Рассматривается задача о построении теории расчета напряженно-деформированного состояния тонких многослойных упругих пластин, у которых на границе раздела слоев заданы линеаризованные условия проскальзывания. Решение данной задачи строится с помощью асимптотического анализа общих уравнений трехмерной теории упругости с условиями неидеального контакта слоев. Асимптотический анализ проводится по малому геометрическому параметру, представляющему отношение толщины пластины к ее характерной длине. Получены рекуррентные формулировки локальных квазиодномерных задач теории упругости с проскальзыванием. Для этих задач получены явные аналитические решения. Представлен вывод осредненных уравнений упругого равновесия многослойных пластин с учетом проскальзыванием слоев. Показано, что за счет эффекта проскальзывания слоев система осредненных уравнений теории многослойных пластин имеет повышенный — пятый порядок производных, в отличие от классического четвертого порядка, который имеет место в теории пластин Кирхгофа–Лява. Показано, что асимптотическая теория позволяет получить явное аналитическое выражение для всех шести компонент тензора напряжений в слоях пластины. Как частный случай рассмотрена задача о расчете напряженно-деформированного состояния четырехслойной пластины при изгибе равномерным давлением, с одним коэффициентом скольжения. Получено полное аналитическое решение этой задачи, в том числе — получены явные выражения для всех ненулевых компонент тензора напряжений. Проведен численный анализ решения осредненной задачи для композитной пластины, у которой слои представляют собой однонаправленно-армированные волокнистые материалы, ориентированные под разными углами. Проведен сравнительный анализ влияния углов армирования волокон и коэффициента скольжения слоев на перемещения пластины и распределение напряжений в слоях. Показано, что задача об изгибе пластины с проскальзыванием допускает существование спектра критических значений коэффициента скольжения, при переходе через которые перемещения и напряжения в слоях пластины существенным образом меняются, причем эти критические значения зависят от угла армирования слоев композита.
Димитриенко Ю.И., Губарева Е.А. Асимптотическая теория многослойных тонких упругих пластин с проскальзыванием слоев. Математическое моделирование и численные методы, 2022, № 2, с. 30–64
539.3 Асимптотическая теория термоползучести многослойных тонких пластин
doi: 10.18698/2309-3684-2014-4-1836
Предложена теория термоползучести многослойных тонких пластин, основанная на анализе общих уравнений трехмерной нелинейной теории термоползучести с помощью построения асимптотических разложений по малому параметру, представляющему отношение толщины пластины к характерной длине, без введения каких-либо гипотез относительно характера распределения перемещений и напряжений по толщине. Сформулированы локальные задачи для нахождения всех шести компонент тензора напряжений во всех слоях пластины, с точным учетом всех граничных условий. Выведены глобальные (осредненные по определенным правилам) уравнения теории термоползучести пластин, показано, что эти уравнения близки по структуре к уравнениям теории пластин Кирхгофа – Лява, но отличаются от них наличием 3-го порядка производных от продольных перемещений. Показано, что предложенная теория позволяет вычислить с наперед заданной точностью все шесть компонент тензора напряжений, включая поперечные нормальные напряжения и напряжения межслойного сдвига, для этого необходимо численно решить только глобальные уравнения теории термоползучести пластин, а остальные вычисления сводятся только к использованию аналитических формул.
Димитриенко Ю. И., Губарева Е. А., Юрин Ю. В. Асимптотическая теория термоползучести многослойных тонких пластин. Математическое моделирование и численные методы, 2014, №4 (4), c. 18-36
539.3 Асимптотическая теория типа Тимошенко для тонких многослойных пластин
doi: 10.18698/2309-3684-2018-1-1640
Предложен новый вариант асимптотической теории тонких многослойных пластин с конечной сдвиговой жесткостью, основанный на асимптотическом анализе общих трехмерных уравнений теории упругости многослойных тел. Этот вариант позволяет получить осредненные уравнения теории пластин типа Тимошенко. Асимптотический анализ проводится по малому геометрическому параметру. Сформулированы локальные задачи теории упругости, которые допускают аналитическое решение. Показано, что при учете только главных членов в асимптотических разложениях асимптотическая теория приводит к осредненным уравнениям пластин типа Кирхгофа — Лява. При учете идущих за главными членов в асимптотических рядах самоподобным образом с предыдущим приближением асимптотическая теория приводит к осредненным уравнениям типа Тимошенко. Теоретическая точность получившегося урезанного асимптотического решения при этом не ниже, чем решения согласно теории типа Кирхгофа — Лява. Разработанный вариант асимптотической теории с помощью явных аналитических формул позволяет с высокой точностью вычислять все шесть компонент тензора напряжений в многослойной пластине. С помощью разработанного метода проведено численное моделирование напряжений и перемещений в многослойной пластине при изгибе равномерным давлением. Численные расчеты показали, что разработанная асимптотическая теория типа Тимошенко дает примерно одинаковую высокую точность расчета изгибных, сдвиговых и поперечных напряжений в сравнении с трехмерным конечно-элементным решением, полученным для очень мелких сеток, и асимптотической теорией типа Кирхгофа — Лява. Для прогиба теория типа Тимошенко дает лучший результат, чем теория типа Кирхгофа — Лява, особенно для относительно коротких пластин. Для продольного перемещения теория типа Тимошенко дает хороший результат только для длинных пластин.
Димитриенко Ю.И., Юрин Ю.В. Асимптотическая теория типа Тимошенко для тонких многослойных пластин. Математическое моделирование и численные методы, 2018, № 1, с. 16-40
539.3 Асимптотическая теория тонких двухслойных упругих пластин с проскальзыванием слоев
doi: 10.18698/2309-3684-2019-1-326
Рассматривается задача о деформировании тонких двухслойных пластин, у кото-рых на границе раздела слоев задано условие проскальзывания, вместо классиче-ского случая идеального контакта. Применен метод асимптотического анализа общих уравнений 3-х мерной теории упругости для решения данной задачи при воз-действии поперечного давления, продольных и сдвиговых усилий на торцевых по-верхностях. Асимптотический анализ проводится по малому геометрическому параметру, представляющему отношение толщины к характерной длине пласти-ны. Получены рекуррентные формулировки локальных квазиодномерных задач теории упругости с проскальзыванием. Для этих задач получены явные аналитиче-ские решения. Выведены осредненные уравнения упругого равновесия двухслойной пластины с проскальзыванием слоев. Показано, что за счет проскальзывания по-рядок осредненных уравнений теории пластин повышается до 5-го порядка, в от-личие от классического 4-го порядка, который имеет место в теории пластин Кирхгофа-Лява. Сформулированы дополнительные граничные условия к этой си-стем 5 порядка и получено аналитическое ее решение для случая прямоугольной пластины под действием равномерного давления. Проведен численный анализ ре-шения осредненной задачи. Показано, что наличие проскальзывания слоев суще-ственно увеличивает прогиб пластины по сравнению с условиями идеального кон-такта слоев.
Димитриенко Ю.И., Губарева Е.А. Асимптотическая теория тонких двухслой-ных упругих пластин с проскальзыванием слоев. Математическое моделирование и численные методы. 2019. № 1. с. 3–26.
539.3 Асимптотическая теория тонких многослойных микрополярных упругих пластин
doi: 10.18698/2309-3684-2023-2-3366
Рассматривается задача о построении теории расчета напряженно-деформированного состояния тонких многослойных упругих пластин в моментной (микрополярной) теории упругости. Решение данной задачи строится с помощью асимптотического анализа общих уравнений 3-х мерной квазистатической задачи моментной теории упругости. Асимптотический анализ проводится по малому геометрическому параметру, равному отношению толщины пластины к ее характерной длине. Получены рекуррентные формулировки локальных задач моментной теории упругости. Для этих задач получены явные аналитические решения. Представлен вывод осредненной системы уравнений равновесия многослойных пластин. Показано, что асимптотическая теория позволяет получить явное аналитическое выражение для всех 9 (в общем случае) компонент тензоров напряжений и моментных напряжений в пластине. Как частный случай рассмотрена задача о расчете напряженно-деформированного состояния центрально-симметричной шарнирно опертой пластины при изгибе под действием равномерно распределенного давления. Получено полное аналитическое решение этой задачи для всех ненулевых компонент тензоров напряжений и моментных напряжений. Проведен численный анализ решения задачи для тензора напряжений в случае однослойной пластины на основе полученных выражений. Проведен сравнительный анализ полученных результатов с аналогичными расчетами для классической теории, выявлены сходства и различия для всех компонент тензора напряжений.
Димитриенко Ю.И., Бойко С.В. Асимптотическая теория многослойных тонких микрополярных упругих пластин. Математическое моделирование и численные методы, 2023, № 2, с. 33–66.
doi: 10.18698/2309-3684-2019-4-100116
Сформулированы задачи идентификации индивидуальных покупателей на основе анализа больших объемов данных о кассовых чеках в крупном супермаркете. Разработаны модели поведения различных категорий индивидуальных покупателей в супермаркете. Предложен вычислительный алгоритм решения задач идентификации индивидуальных покупателей по панельным данным кассовых чеков. Алгоритм является универсальным, так как не использует никаких персональных данных о покупателе, а построен на анализе только покупательской активности, вычисляемой на основе панельных данных о кассовых чеках. Алгоритм позволяет идентифицировать группы покупателей, а также с определенной вероятностью, отдельного индивидуального покупателя. В качестве примера применения разработанных моделей и вычислительных алгоритмов использовались товарные чеки из сети супермаркетов компании X5Retail Group за некоторый промежуток времени.
Димитриенко Ю.И., Котельникова А.В. Задачи идентификации индивидуальных покупателей на основе анализа больших объемов панельных данных о кассовых чеках. Математическое моделирование и численные методы, 2019, № 4, с. 100–116.
doi: 10.18698/2309-3684-2015-3-101118
Предложена модель для расчета напряженно-деформированного состояния (НДС) осадочных горных пород с учетом их ползучести. Представлен алгоритм конечно-элементного решения трехмерной задачи ползучести, использующий конечно-разностные схемы метода Эйлера по времени. Разработано специализированное программное обеспечение, позволяющее строить компьютерные 3D-модели областей горных пород по исходным сериям 2D-изображений, полученных с помощью данных сейсморазведки, а также проводить конечно-элементный расчет изменения НДС горных пород во времени. Проведено численное моделирование напряженно-деформированного состояния горных пород на примере зоны из Астраханского нефтегазового месторождения. Установлено, что в одних точках происходит поднятие горной породы, в других — ее опускание. Скорость ползучести различных слоев различна — наибольшие значения скорости ползучести реализуются в глинистых слоях и в песчаных, заполненных жидкостью, которые обладают наиболее заметными свойствами ползучести. Разработанный алгоритм и программное обеспечение для численного моделирования показали себя достаточно эффективными и могут быть применены для исследования НДС горных пород.
Димитриенко Ю. И., Юрин Ю. В. Конечно-элементное моделирование напряженно-деформированного состояния горных пород с учетом ползучести. Математическое моделирование и численные методы, 2015, №3 (7), c. 101-118
doi: 10.18698/2309-3684-2018-2-7095
Метод конечных элементов используется для моделирования неизотермического потока неньютоновских вязких жидкостей в сложных геометриях. Рассмотрена модель Carreau-Yasuda неньютоновской жидкости, в которой зависимость коэффициента вязкости от второго инварианта тензора скоростей деформации имеет степенной вид. Получена вариационная формулировка задачи движения неньютоновской жидкости для плоского случая. Для решения системы уравнений Навье-Стокса применяется итерационный алгоритм Ньютона-Рафсона, а для решения уравнения энергии использован итерационный алгоритм Пикара. Рассмотрена задача о движении полимерной массы в пресс-форме сложного переменного сечения при наличии неравномерного температурного поля. С помощью конечно-элементного моделирования проведен численный анализ влияния различных параметров на движение жидкости и теплопередачу полимерного материала при различных значениях внешнего давления. Показано, что характер движения неньютоновской жидкости существенно зависит от реологических свойств жидкости и характеристик геометрической формы, что необходимо учитывать при технологических процессах переработки пластмасс.
Димитриенко Ю.И., Шугуан Ли Конечно-элементное моделирование неизотермического стационарного течения неньютоновской жидкости в сложных областях. Математическое моделирование и численные методы, 2018, № 2, с. 70–95.
539.3 Конечно-элементное моделирование нестационарной термоустойчивости композитных конструкций
doi: 10.18698/2309-3684-2024-1-3854
Рассматривается задача моделирования потери устойчивости конструкций из композиционных материалов вследствие нестационарных тепловых воздействий на них, с учетом температурной зависимости свойств компонентов композита. Сформулированы системы уравнений для расчета основного и варьированного состояний конструкции. Предложена классификация задач устойчивости. Описано применение метода конечных элементов для определения критической температуры и отвечающей ей формы потери устойчивости конструкции. Сформулирована локальная обобщенная задача на собственные значения и произведена верификация предложенной модели с помощью программного комплекса SMCM, разработанного в НОЦ «Симплекс» МГТУ им. Н.Э. Баумана, а также с помощью ПК ANSYS. Показано, что результаты расчета собственных форм и собственных значений в тестовой задаче достаточно хорошо совпадают.
Димитриенко Ю.И., Богданов И.О., Юрин Ю.В., Маремшаова А.А., Анохин Д. Конечно-элементное моделирование нестационарной термоустойчивости композитных конструкций. Математическое моделирование и численные методы, 2024, № 1, с. 38–54.
doi: 10.18698/2309-3684-2017-3-4970
Разработана методика для моделирования повреждаемости при циклическом нагружении элементов конструкций из слоисто-волокнистых композиционных материалов с дефектами типа расслоения. Методика состоит из трех этапов, итерационно повторяющихся в цикле по времени: конечно-элементного моделирования макроскопического напряженно-деформированного состояния в конструкции с дефектами; моделирования микроскопического напряженно-деформированного состояния в окрестности расслоения; моделирования накопления повреждений в матрице, соединяющей слои армирующих волокон в окрестности дефекта. В модели учитывается криволинейная анизотропия композиционного материала в составе конструкций сложной геометрической формы. Приведен пример численного расчета фрагмента композитной конструкции несущей лопасти вертолета с учетом дефекта типа расслоения. Продемонстрирована возможность применения разработанной методики для моделирования повреждаемости в сложных композитных конструкциях. Конечно-элементное решение макроскопической задачи реализовано с помощью программной платформы SMCM, разработанной в Научно-образовательном центре «Суперкомпьютерное инженерное моделирование и разработка программных комплексов» (НОЦ «СИМПЛЕКС») МГТУ им. Н.Э. Баумана.
Димитриенко Ю.И., Юрин Ю.В. Конечно-элементное моделирование поврежда- емости и долговечности композитных элементов конструкций с дефектами типа рас- слоения. Математическое моделирование и численные методы, 2017, No 3, с. 49–70.
539.36 Конечно-элементное моделирование собственных колебаний оболочечных конструкций
doi: 10.18698/2309-3684-2023-3-317
Предложен численный алгоритм решения задачи на собственные колебания для тонкостенных оболочечных конструкций, на основе метода конечных элементов. Разработан программный модуль в составе программного комплекса SMCM, который реализует предложенный численный алгоритм. Было проведено решение тестовой задачи для собственных колебаний цилиндрического оболочечного элемента конструкции. Проведен сравнительный анализ собственных частот и собственных форм с аналогичными результатами, полученными с помощью двумерного оболочечного решения в ПК ANSYS, а также с результатами решения трехмерной задачи на собственные колебания в ПК ANSYS.
Димитриенко Ю.И., Юрин Ю.В., Богданов И.О., Маремшаова А.А. Конечно-элементное моделирование собственных колебаний оболочечных конструкций. Математическое моделирование и численные методы, 2023, № 3, с. 3–17.
doi: 10.18698/2309-3684-2023-1-4363
Рассмотрена проблема разработки модели для расчета температурных полей в тонкостенных многослойных криволинейно-анизотропных тонких оболочках произвольной геометрической формы, в том числе составных. Как правило для решения этой задачи используется конкретная координатная запись уравнений теории теплопроводности, что создает определенные трудности для расчета сложных составных оболочек. В данной работе предложено использовать инвариантную запись вариационной постановки задач теории теплопроводности, с последующим применением процедуры конечно-элементного алгоритма. В результаты выведены матричное дифференциальное уравнение для определения температурного поля в узлах конечно-элементной сетки. Разработан программный модуль для конечно-элементного решения задачи нестационарной теплопроводности оболочек. Модуль функционирует в составе программного комплекса SMCM, созданного в Научно-образовательном центре «Суперкомпьютерного инженерного моделирования и разработки программных комплексов» МГТУ им. Н.Э. Баумана (НОЦ «СИМПЛЕКС»). Приведен пример решения задачи расчета нестационарного температурного поля в цилиндрической оболочке с продольно-поперечным подкреплением. Проведено сравнение численного моделирования с аналогичными расчетами в ПК ANSYS, которое показало высокую точность предложенного метода: относительно отклонение результатов не превышает 0,5 %.
Димитриенко Ю.И., Юрин Ю.В., Коряков М.Н., Маремшаова А.В. Конечно-элементное моделирование температурных полей в тонкостенных многослойных оболочечных элементах конструкций. Математическое моделирование и численные методы, 2023, No 1, с. 43–63
doi: 10.18698/2309-3684-2019-2-1534
Рассматривается сопряженная задача аэро-термо-механики теплонагруженных конструкций из термодеструктирующих полимерных композиционных материалов при воздействии интенсивного аэродинамического потока. Сформулирована математическая постановка сопряженной задачи и предложены алгоритмы численного решения этой задачи. Алгоритмы основаны на итерационном решении трех типов задач: аэрогазодинамики, внутреннего тепломассообмена и термомеханики конструкции летательного аппарата. Представлен пример численного решения задачи для модельного элемента конструкции летательного аппарата в виде затупленного конуса. Показано, что воздействие высоких температур аэродинамического нагрева конструкции приводит к термодеструкции полимерного композиционного материала, следствием которого является генерация большого количества газов в порах и термохмическая усадка, которые при определенных условиях могут приводить к преждевременному разрушению теплонагруженной композитной конструкции.
Димитриенко Ю.И., Коряков М.Н., Юрин Ю.В., Захаров А.А. Конечно-элементное моделирование термонапряжений в композитных термодеструктирующих конструкциях при аэродинамическом нагреве. Математическое моделирование и численные методы, 2019, № 2, с. 15–34.
doi: 10.18698/2309-3684-2020-1-327
Рассматривается задача построения многоуровневой модели для вычисления упругих свойств полимерных композиционных материалов со сложной структурой армирования при высоких температурах, при которых происходят процессы термодеструкции матрицы и армирующих волокон. Для того, чтобы учесть изменение упругих свойств композита в зависимости от температуры и времени нагрева, предложена 3-х уровневая модель композита. На нижнем уровне этой модели рассматриваются моно-волокна и матрица, состоящие из 4-х фаз, соотношение между которыми меняется при нагреве. На этом уровне используются аналитические соотношения, предложенные ранее в работах Ю.И. Димитриенко. На следующем уровне модели рассмотрен однонаправленный композит, состоящий из пучков моноволокон и матрицы. Для расчета упругих свойств на этом уровне применяется метод асимптотического осреднения, и конечно-элементный алгоритм решения локальных задач теории термоупругости, возникающих в этом методе. На 3-м структурном уровне модели рассмотрены композиты со сложными структурами армирования, в частности тканевые композиты. Для расчета упругих свойств композита на этом уровне также применяется метод асимптотического осреднения. Для численного расчета упругих характеристик полимерных композитов при высоких температурах разработано специализированное программное обеспечение, функционирующее под управлением программного комплекса SMCM, созданного на кафедре «Вычислительная математика и математическая физика» МГТУ им. Н.Э. Баумана и в научно-образовательном центре «Суперкомпьютерное инженерное моделирование и разработка программных комплексов» МГТУ им. Н.Э. Баумана. В статье приведены примеры применения разработанной многоуровневой модели и программного обеспечения для тканевых композитов на основе эпоксидной матрицы и стеклянных волокон. Вычислены значения всех компонент тензора модулей упругости композита, меняющиеся в зависимости от программы нагрева композита. Получены поля микронапряжений в композите. Проведено сравнение полей микронапряжений и эффективных констант упругости при нормальных температурах, с аналогичными значениями, полученными с помощью программного комплекса ANSYS, который был доработан для возможности вычисления эффективных упругих констант в соответствии с предложенной моделью. Получено очень хорошее совпадение результатов расчетов, как эффективных констант, так и полей микронапряжений, что позволяет говорить о высокой точности разработанного программного обеспечения.
Димитриенко Ю.И., Юрин Ю.В., Сборщиков С.В., Богданов И.О., Яхновский А.Д., Баймурзин Р.Р. Конечно-элементное моделирование упругих свойств тканевых полимерных композитов при высоких температурах. Математическое моделирование и численные методы. 2020. № 1. с. 3–27
doi: 10.18698/2309-3684-2014-2-2848
Предложена методика расчета эффективных вязкоупругих характеристик композиционных материалов при установившихся циклических колебаниях, основанная на методе асимптотического осреднения периодических структур и конечно-элементном решении локальных задач вязкоупругости на ячейке периодичности композитов. Приведены примеры численного моделирования вязкоупругих характеристик однонаправленно-армированных композитов и расчетов комплексных тензоров концентрации напряжений в ячейке периодичности. Проведен сравнительный анализ зависимостей тангенса угла потерь комплексных модулей упругости композита от частоты колебаний, полученных с помощью метода конечных элементов и по приближенным смесевым формулам. Показано, то использование приближенных смесевых формул для расчета вязкоупругих характеристик, которые часто применяют для оценки диссипативных характеристик композитов, может давать существенную погрешность в расчетах.
Димитриенко Ю. И., Губарева Е. А., Сборщиков С. В. Конечно-элементное моделирование эффективных вязкоупругих свойств однонаправленных композиционных материалов. Математическое моделирование и численные методы, 2014, №2 (2), c. 28-48
5 Математическое и компьютерное моделирование — основа современных инженерных наук
doi: 10.18698/2309-3684-2014-1-None
Александров А. А., Димитриенко Ю. И. Математическое и компьютерное моделирование — основа современных инженерных наук. Математическое моделирование и численные методы, 2014, №1 (1), c. 3-4
doi: 10.18698/2309-3684-2022-3-4770
Предложена микроструктурная модель слоистых упруго-пластических композитов на основе анизотропной теории течения. Модель представляет собой эффективные определяющие соотношения трансверсально-изотропной теории пластического течения, в которой константы модели определяются не экспериментально, а на основе аппроксимаций диаграмм деформирования композитов, полученных путем прямого численного решения задач на ячейке периодичности для базовых траекторий нагружения, которые возникают в методе асимптотического осреднения. Сформулирована задача идентификации констант этой модели композита, для численного решения этой задачи применяются методы оптимизации функционала ошибки. Представлены результаты численного моделирования предложенным методом для слоистых упруго-пластических композитов, показавшие хорошую точность аппроксимации численных диаграмм деформирования.
Димитриенко Ю.И., Черкасова М.С., Димитриенко А.Ю. Микроструктурная модель анизотропной теории течения для упруго-пластических слоистых композитов. Математическое моделирование и численные методы, 2022, № 3, с. 47–70.
doi: 10.18698/2309-3684-2021-4-1744
Предложена модель определяющих соотношений упруго-пластических композитов, обладающих кубической симметрией свойств. К этому классу относится значительно число композиционных материалов: дисперсно-армированные композиты, у которых имеется упорядоченная, а не хаотическая система армирования, а также некоторые типы пространственно-армированных композитов. Для построения модели нелинейных определяющих соотношений использован тензорно-симметрийный подход, основанный на спектральных разложениях тензоров напряжений и деформаций, а также спектральном представлении нелинейных тензорных соотношений между этими тензорами. Рассмотрена деформационная теория пластичности, для которой использован тензорно-симметрийный подход, а также предложены конкретные модели для функций пластичности, зависящих от спектральных инвариантов тензора деформации. Для определения констант модели предложен метод, в котором эти константы вычисляются на основе аппроксимации кривых деформирования, полученных прямым численным решением трехмерных задач на ячейке периодичности упруго-пластических композитов. Эти задачи возникают в методе асимптотического осреднения периодических сред. Для решения задач на ячейке периодичности использован конечно-элементный метод и специальное программное обеспечение, реализующее решения задач на ячейках периодичности, разработанное в Научно-образовательном центре «Суперкомпьютерное инженерное моделирование и разработка программных комплексов» МГТУ им. Н.Э. Баумана. Рассмотрен пример расчета констант модели композита с помощью предложенного метода для дисперсно-армированного композита на основе металлической матрицы. А также проведена верификация предложенной модели для различных путей многоосного нагружения композита при прямом численном моделировании. Показано, что предложенная микроструктурная модель и алгоритм определения ее констант обеспечивают достаточно высокую точность прогнозирования упруго-пластического деформирования композита.
Димитриенко Ю.И., Сборщиков С.В., Димитриенко А.Ю., Юрин Ю.В. Микроструктурная модель деформационной теории пластичности квази-изотропных композиционных материалов. Математическое моделирование и численные методы, 2021, № 4, с. 17–44.
doi: 10.18698/2309-3684-2022-1-1541
В рамках деформационной теории пластичности при активном нагружении предложена модель определяющих соотношений упруго-пластических композитов, относящихся к классу трансверсально-изотропных материалов. Для построения нелинейных определяющих соотношений использована теория спектральных разложениях тензоров напряжений и деформаций, спектральное представление нелинейных тензорных функций для трансверсально-изотропных сред. Предложены конкретные модели функций пластичности, зависящие от спектральных инвариантов тензора деформации. Для определения констант модели предложен метод, в котором эти константы вычисляются на основе аппроксимации кривых деформирования, полученных прямым численным решением трехмерных задач на ячейке периодичности упруго-пластических композитов. Задачи на ячейке периодичности формулируются с помощью метода асимптотического осреднения периодических сред. Численное решение задач на ячейке периодичности осуществляется с помощью конечно-элементного метода в рамках программного обеспечения, разработанного в Научно-образовательном центре «Суперкомпьютерное инженерное моделирование и разработка программных комплексов» МГТУ им. Н.Э. Баумана. приведен пример численного расчета констант модели композита с помощью предложенного метода для однонаправленно-армированного композита на основе углеродных волокон и матрицы из алюминиевого сплава. Приведены примеры верификация предложенной модели для различных траекторий нагружения композита в 6 мерном пространстве напряжений. Показано, что предложенная микроструктурная модель и алгоритм определения ее констант обеспечивают достаточно высокую точность прогнозирования упруго-пластического деформирования трансверсально-изотропных композитов.
Димитриенко Ю.И., Сборщиков С.В., Димитриенко А.Ю., Юрин Ю.В. Микроструктурная модель деформационной теории пластичности трансверсально-изотропных композитов. Математическое моделирование и численные методы, 2022, № 1, с. 15–41.
539.3 Многомасштабное моделирование многослойных тонких композитных пластин с уединенными дефектами
doi: 10.18698/2309-3684-2016-4-4766
Разработана многомасштабная модель деформирования многослойных тонких пластин из композиционных материалов с уединенными дефектами. Модель основана на асимптотическом анализе общих трехмерных уравнений механики деформируемого твердого тела. Общее решение трехмерных уравнений сведено к решению задач для тонких пластин без дефектов и локальных трехмерных задач в окрестности дефекта с условием затухания решения на удалении от дефекта. Для расчета многослойных пластин использованы локальные задачи, которые позволяют найти явное решение для всех шести компонент тензора напряжений, в области без дефекта. В зоне дефекта напряжения и перемещения представляет собой суперпозицию двух решений: полученного на основе двумерного расчета пластин и локальной трехмерной задачи механики. Приведен пример численного конечно элементного решения локальной задачи механики для трехслойной композитной пластины с уединенным дефектом в среднем слое. Показано, что влияние дефекта локализовано в непосредственной его окрестности, а максимум концентрации трансверсальных напряжений достигается в окрестности вершины дефекта.
Димитриенко Ю. И., Юрин Ю. В. Многомасштабное моделирование многослойных тонких композитных пластин с уединенными дефектами. Математическое моделирование и численные методы, 2016, №4 (12), c. 47-66
doi: 10.18698/2309-3684-2017-2-327
Предложена математическая модель многомасштабного процесса фильтрации слабосжимаемых жидкостей и газов в периодических пористых средах применительно к процессу производства композиционных материалов на основе метода RTM. Применение метода асимптотического осреднения позволило сформулировать так называемые локальные задачи фильтрации для отдельной поры и глобальную задачу неустановившейся фильтрации слабосжимаемых жидкостей. Рассмотрены две модели слабосжимаемой жидкости: классическая, основанная на уравнении состояния Маскета, требующем задания начальных постоянных давления и плотности жидкости, и обобщенная модель, основанная на том же уравнении, но требующая задания только начальной плотности жидкости, использующая вместо начального постоянного давления неизвестное гидростатическое давление в жидкости. Представлены результаты моделирования процесса пропитки образца
материала наполнителя связующим с использованием двух указанных моделей слабосжимаемой жидкости.
Димитриенко Ю.И., Богданов И.О. Многомасштабное моделирование процес- сов фильтрации жидкого связующего в композитных конструкциях, изготавливае- мых методом RTM. Математическое моделирование и численные методы, 2017, No 2, с. 3–27.
539.3+519.86 Многомасштабное моделирование упругопластических композитов с учетом повреждаемости
doi: 10.18698/2309-3684-2016-2-323
Предложена модель деформирования упругопластических композиционных материалов периодической структуры с учетом повреждаемости фаз композита, основанная на варианте деформационной теории пластичности при активном нагружении. Для моделирования эффективных характеристик упругопластических композитов применен метод асимптотической гомогенизации периодических структур. Для численного решения локальных задач упругопластичности с учетом повреждаемости на ячейке периодичности предложен вариант итерационного метода линеаризации, а для численного решения линеаризованных задач на ячейке периодичности — метод конечных элементов с использованием программной среды SMCM, разработанной в Научно-образовательном центре «Суперкомпьютерное инженерное моделирование и разработка программных комплексов» (СИМПЛЕКС) МГТУ им. Н.Э. Баумана. Приведены примеры численных расчетов для дисперсно-армированного металлокомпозита (алюминиевой матрицы, наполненной частицами SiC). Представлены результаты численного моделирования процессов деформирования, накопления повреждений и разрушения металлокомпозита.
Димитриенко Ю. И., Губарева Е. А., Сборщиков С. В. Многомасштабное моделирование упругопластических композитов с учетом повреждаемости. Математическое моделирование и численные методы, 2016, №2 (10), c. 3-23
doi: 10.18698/2309-3684-2021-2-1537
Статья посвящена построению модели деформирования слоистых упруго– пластических композитов с периодической структурой. Все слои композита подчиняются теории пластического течения (ассоциативному закону пластичности) с различными поверхностями пластичности. Для решения указанной задачи применяется метод асимптотического осреднения Бахвалова–Победри. Получено аналитическое решение локальных задач пластического течения на ячейке периодичности. Построены эффективные упруго–пластические определяющие соотношения слоистого композита. Приведены примеры численного расчета диаграмм циклического деформирования упруго–пластического композита при различных сочетаниях слоев в композите.
Димитриенко Ю.И., Губарева Е.А., Черкасова М.С. Моделирование деформирования слоистых периодических композитов на основе теории пластического течения. Математическое моделирование и численные методы, 2021, № 2, с. 15–37.
doi: 10.18698/2309-3684-2023-4-4763
Предложена математическая модель фазовых превращений в стальных сплавов при контактной точечной сварке, учитывающая все этапы процесса: от разогрева и частичного расплавления металла, которые вызывают необратимые физико-химические превращения микроструктуры стали, до этапа охлаждения, при котором происходит отверждение и «возвратное» образование фаз сплава. Модель описывает изменения 3D микроструктуры стального сплава нагреве и последующем охлаждении с образованием ферритных и аустенитных структур. Предложен алгоритм вычисления констант модели с помощью специальной процедуры решения обратной задачи, а также алгоритм численного решения задачи прогнозирования изменения упругих свойств стали в процессе сварки, включающий в себя конечно-элементное 3D моделирование с помощью программного комплекса SMCM, разработанного на кафедре «Вычислительная математика и математическая физика» МГТУ им. Н.Э. Баумана. Приведен пример численного моделирования с помощью предложенной модели и алгоритма для стального сплава.
Димитриенко Ю.И., Сальникова А.А., Орешникова Е.А. Моделирование изменения микроструктуры и упругих свойств сплавов в процессе контактной точечной сварки. Математическое моделирование и численные методы, 2023, № 4, с. 47–63
doi: 10.18698/2309-3684-2024-2-1734
Статья посвящена моделированию деформирования композиционных материалов с конечными деформациями. Рассмотрены так называемые универсальные модели определяющих соотношений для компонентов композита, задающих сразу несколько классов нелинейной связи между тензором напряжений Пиолы—Кирхгофа и градиентом деформаций в рамках разных энергетических пар тензоров напряжений-деформаций. Применен метод асимптотического осреднения и сформулированы локальные задачи для решения задачи об определении осредненных свойств композитов с конечными деформациями. Рассмотрена вариационная постановка исходной задачи деформирования, так называемых локальных задач на ячейке периодичности и осредненной задачи для композита, позволившая применить МКЭ для численного решения указанных классов задач. Разработан программный модуль в составе программного комплекса Manipula/SMCM, который реализует предложенный численный алгоритм. Приведен пример численного решения задач на ячейке периодичности для 3D ортогонально-армированного композита с учетом больших деформаций матрицы и волокон, а также рассчитаны диаграммы деформирования композита для различных вариантов универсальных моделей определяющих соотношений.
Димитриенко Ю.И., Каримов С.Б., Димитриенко А.Ю. Моделирование конечных деформаций композиционных материалов на основе универсальных моделей Аn и метода асимптотического осреднения. Математическое моделирование и численные методы, 2024, № 2, с. 17–34.
539.3 Моделирование напряжений в композитной нелинейно упругой панели при цилиндрическом изгибе
doi: 10.18698/2309-3684-2021-1-330
Рассмотрена задача о расчете напряженно деформированного состояния композитной слоистой панели при цилиндрическом изгибе в условиях конечных деформаций. Для решения задачи применен метод асимптотического осреднения периодических нелинейно упругих структур с конечными деформациями, подробно разработанный ранее в предшествующих работах авторов. Особенностью данной задачи является использование универсальных моделей определяющих соотношений для изотропных компонентов композита, а также для композита в целом, который является трансверсально изотропной нелинейно упругой средой. Универсальные модели позволяют получать решение задач в рамках единого алгоритма решения одновременно для нескольких классов моделей нелинейно упругих сред, соответствующих различным сопряженным парам тензоров напряжений - деформаций. Для задачи о цилиндрическом изгибе композитной панели получено аналитическое решение. Проведен численный анализ решения на примере композита, ячейка периодичности которого состоит из 2-х слоев: полиуретана и резины. Показано, что для тонких панелей напряжения, как осредненные, так и истинные, практически не зависят от класса модели определяющих соотношений. В тоже время для более толстых панелей напряжения существенно различаются для разных классов моделей слоев композита.
Димитриенко Ю.И., Губарева Е.А., Каримов С.Б., Кольжанова Д.Ю. Моделирование напряжений в композитной нелинейно упругой панели при цилиндрическом изгибе. Математическое моделирование и численные методы, 2021, № 1, с. 3–30.
doi: 10.18698/2309-3684-2018-3-114132
Разработанная авторами ранее общая асимптотическая теория тонких многослойных оболочек применяется для случая цилиндрических оболочек. Представлены соотношения в явной аналитической форме для всех шести компонент тензора напряжений в тонкой многослойной упругой цилиндрической оболочке, в виде зависимости от деформаций, искривлений срединной поверхности оболочки, а также их производных по продольным координатам. Полученные формулы позволяют рассчитывать все распределения компонент тензора напряжений по толщине в цилиндрической оболочке после того, как найдено решения двумерной задачи теории оболочек типа Кирхгофа-Лява. Приведен пример расчета напряжений в цилиндрической композитной оболочке при осесимметричном изгибе давлением. Для вычисления напряжений по этим формулам требуется лишь дифференцирование перемещений – прогиба и двух перемещений срединной поверхности оболочки, для которых получено аналитическое решение.
Димитриенко Ю.И., Губарева Е.А., Пичугина А.Е. Моделирование напряжений в тонких композитных цилиндрических оболочках на основе асимптотической теории. Математическое моделирование и численные методы, 2018, № 3, с. 114–132.
doi: 10.18698/2309-3684-2020-2-2645
Статья посвящена разработке метода расчета нелинейных диэлектрических свойств композитов с периодической структурой. Методы прогнозирования нелинейных диэлектрических свойств композитов играют важную роль для проектирования диэлектрических материалов с заданными свойствам, в частности для гетерогенных сегнетоэлектриков, широко применяющихся для создания различных приборов и электротехнических устройств, например, для создания накопителей памяти компьютеров. Рассмотрена квазистатическая задача о распределении электрического заряда в неоднородной поляризующейся среде с периодической структурой и нелинейно диэлектрическими свойствами. Для решения этой нелинейной задачи применен метод асимптотической гомогенизации, предложенный Н.С. Бахваловым, Э. Санчес-Паленсией, Б.Е. Победрей. В результате сформулированы локальные нелинейные задачи электростатики на ячейке периодичности, предложен алгоритм вычисления эффективных нелинейных определяющих соотношений для диэлектрических свойств, и осредненная задача для композита с эффективными свойствами. Для случая композита со слоистой структурой получено решение локальных задач и построены эффективне определяющие соотношения для нелинейных диэлектрических свойств композита. Показано, слоистый композит является трансверсально изотропным нелинейно диэлектрическим материалом, если его сли являются изотропными материалами. Рассмотрен численный пример расчета нелинейных свойств 2-х слойного композита на основе титаната бария и сегнетокерамического вариконда ВК4. Предложена модель, описывающая нелинейную зависимость диэлектрической проницаемости этих материалов от вектора напряженности электрического поля. Показано, что нелинейная зависимость тензора диэлектрической проницаемости композита от вектора напряженности существенно отличается при направлении поля в плоскости слоев и в поперечном направлении. Показано, что разработанная методика может служить основой для проектирования нелинейно диэлектрических композиционных материалов с анизотропными свойствами.
Димитриенко Ю.И., Губарева Е.А., Зубарев К.М. Моделирование нелинейных диэлектрических свойств композитов на основе метода асимптотической гомогенизации. Математическое моделирование и численные методы. 2020. № 2. с. 26–45
doi: 10.18698/2309-3684-2017-1-3254
Представлены результаты разработки модели деформирования несжимаемых слоистых композитов с конечными деформациями по характеристикам отдельных слоев. Предложен вариант метода асимптотического осреднения для слоистых нелинейно-упругих несжимаемых композитов с конечными деформациями и периодической структурой. Использовано универсальное представление определяющих соотношений для несжимаемых слоев композита, предложенное Ю.И. Димитриенко, позволяющее проводить моделирование одновременно для комплекса различных нелинейно-упругих моделей сред, отличающихся выбором пары энергетических тензоров. Доказано, что, если все слои композита являются несжимаемыми, то композит в целом также является несжимаемой, но анизотропной средой. Рассмотрена задача об одноосном растяжении слоистой пластины из несжимаемых слоев с конечными деформациями, с помощью разработанного метода рассчитаны эффективные диаграммы деформирования, связывающие компоненты осредненных тензоров напряжений Пиолы — Кирхгофа и градиента деформаций, а также распределение напряжений в слоях композита.
Разработанный метод расчета эффективных диаграмм деформирования и напряжений в слоях композита может быть использован при проектировании эластомерных композитов с заданными свойствами.
Димитриенко Ю. И., Губарева Е. А., Кольжанова Д. Ю., Каримов С. Б. Моделирование несжимаемых слоистых композитов с конечными деформациями на основе метода асимптотического осреднения. Математическое моделирование и численные методы, 2017, №1 (13), c. 32-54
doi: 10.18698/2309-3684-2019-3-1938
Исследована математическая модель многомасштабного процесса фильтрации неньютоновской жидкости в трехмерных периодических пористых средах методом асимптотической гомогенизации. Сформулированы так называемая локальная задача фильтрации в отдельной поре и локальное неньютоновско-вязкое определяющее соотношение. Разработан итерационный метод конечных элементов для решения локальной задачи в 1/8 ячейке периодичности, основанный на физической симметрии структуры. Рассчитаны распределение компонент скорости фильтрации, микрополей давления и неньютоновской вязкости в отдельной поре. На основе закона Дарси проанализирован нелинейный закон фильтрации, показано влияние реологических свойств жидкости на проницаемость.
Димитриенко Ю.И., Шугуан Ли. Моделирование проницаемости неньютоновских жидкостей в трехмерных композитных структурах на основе метода асимптотической гомогенизации. Математическое моделирование и численные методы. 2019. № 3.c.19–38.
doi: 10.18698/2309-3684-2018-4-324
Рассмотрена задача термоконвекции в зоне расплава при однонаправленной кри-сталлизации металлического осесимметричного образца с наличием свободной границы поверхности (жидкого моста) в условиях микрогравитации. Математи-ческая задача включает в себя систему уравнений Навье–Стокса в приближении Буссинеска с уравнением для массопереноса частиц примесей в жидкости, а также уравнения для движения свободной поверхности жидкости. Разработан численный алгоритм решения задачи, основанный на использовании метода функций вихря и тока, линеаризации и конечно-разностной аппроксимации с применением
метода переменных направлений для решения разностной системы линейных урав-нений. Выполнен расчет физических параметров термоконвективных процессов
в зоне расплава. Показано, что учет движения свободной границы у кристаллизу-ющейся жидкой фазы приводит к изменению распределения примесей вблизи по-верхности отверждения, что, в свою очередь, вызывает изменение характерис-
тик отвержденного материала.
Димитриенко Ю.И., Леонтьева С.В. Моделирование термоконвективных процессов при однонаправленной кристаллизации сплавов с учетом движения свободных границ. Математическое моделирование и численные методы. 2018. № 4. с. 3–24
doi: 10.18698/2309-3684-2020-4-84110
Предложена асимптотическая теория термоупругости многослойных композитных оболочек, вывод основных уравнений которой основан на асимптотическом разложении по малому геометрическому параметру трехмерных уравнений термоупругости. Данный метод был ранее разработан авторами для тонких композитных пластин, и в настоящей статье применен для тонкостенных оболочек произвольной формы. Согласно разработанному методу исходная трехмерная задача термоупругости распадается на рекуррентную последователь одномерных локальных задач термоупругости и осредненную двумерную задачу тонких оболочек. Для локальных задач термоупругости получены аналитические решения, которые позволяют замкнуть осредненную постановку задачу теории оболочек относительно 5 неизвестных функций: продольных перемещений, прогиба и двух перерезывающих сил. Показано, что осредненная задача для многослойных оболочек сов-падает с классической системой уравнений оболочек Кирхгофа-Лява, однако она является более обоснованной, так как в основе асимптотической теории не со-держится никаких допущений относительно характера распределения перемещений и напряжений по толщине. Кроме того, асимптотическая теория позволяет вычислить все напряжения в оболочке, без решения каких-либо дополнительных задач, а только лишь дифференцируя осредненные перемещения.
Димитриенко Ю.И., Губарева Е.А., Пичугина А.Е. Моделирование термона-пряжений в композитных оболочках на основе асимптотической теории. Часть 1. Общая теория оболочек. Математическое моделирование и численные методы, 2020, № 4, с. 84–110.
doi: 10.18698/2309-3684-2022-4-330
Разработанная авторами ранее в первой части данного исследования общая асимптотическая теория тонких многослойных оболочек применяется для цилиндрических анизотропных термоупругих оболочек. Показано, что для цилиндрических оболочек общая теория существенно упрощается: получены общие двумерные осредненные уравнения термоупругости многослойных оболочек. Эти уравнения подобны классическим уравнениям цилиндрических оболочек в теории Кирхгофа–Лява, однако они получены совершенно иным способом: на основе только асимптотического анализа общих трехмерных уравнений теории термоупругости. Никакие гипотезы относительно распределения перемещений или напряжений по толщине не используются в данной теории, что делает ее логически непротиворечивой. Кроме того, разработанная теория позволяет получить явные аналитические выражения для всех 6 компонент тензора напряжений в цилиндрических анизотропных оболочках. Получены явные выражения для всех тензорных констант, входящих в эти формулы для напряжений. Приведен пример расчета термонапряжений в цилиндрической композитной оболочке при осесимметричном изгибе, обусловленном совместным действием внешнего давления и одностороннего нестационарного нагрева. Рассмотрен пример слоисто-волокнистой четырехслойной оболочки, с различными углами спиральной намотки армирующих волокон. Показано, что разработанная позволяет детально исследовать такие сложные эффекты, как образование значительных поперечных термонапряжений при нагреве, которые значительно превышают уровень напряжений межслойного сдвига, традиционно считающихся наиболее опасными для слоистых композитов.
Димитриенко Ю.И., Губарева Е.А., Пичугина А.Е., Белькова К.В., Борин Д.М. Моделирование термонапряжений в композитных оболочках на основе асимптотической теории. Часть 2. Расчет цилиндрических оболочек. Математическое моделирование и численные методы, 2022, № 3, с. 3–30
doi: 10.18698/2309-3684-2015-2-322
Предложена модель микроструктуры двухфазных монокристаллических интерметаллидных сплавов в виде периодической структуры гексагонального типа, а также математическая модель упругопластического деформирования монокристаллического сплава, основанная на методе асимптотической гомогенизации периодических структур. Для фаз используется деформационная теория пластично-сти при активном нагружении с учетом эффекта их повреждаемости. Для численных расчетов по разработанной модели использован жаропрочный моно-кристаллический сплав ВКНА-1В. Проведены конечно-элементные расчеты микромеханических процессов деформирования и разрушения монокристаллического сплава ВКНА-1В. Установлено, что при растяжении максимальные значения параметра повреждаемости фаз, определяющего зону начала микроразрушения сплава, достигаются в зонах, прилегающих к поверхностям раздела фаз и в местах максимального искривления геометрической формы фаз. Проведены расчеты диаграмм деформирования жаропрочных сплавов в области пластичности, которые показали достаточно хорошее совпадение с экспериментальными данными.
Димитриенко Ю. И., Губарева Е. А., Сборщиков С. В., Базылева О. А., Луценко А. Н., Орешко Е. И. Моделирование упругопластических характеристик монокристаллических интерметаллидных сплавов на основе микроструктурного численного анализа. Математическое моделирование и численные методы, 2015, №2 (6), c. 3-22
539.3 Моделирование эффективных упруго-пластических свойств композитов при циклическом нагружении
doi: 10.18698/2309-3684-2020-4-326
Предложена методика расчета эффективных упруго-пластических свойств композитов при циклическом нагружении. Методика основана на применении метода асимптотического осреднения периодических структур для случая материалов с упруго-пластическими свойствами при циклическом нагружении. Рассмотрена модель деформационной теории пластичности А.А. Ильюшина – В.В. Москвитина при циклических нагружениях c использованием модели Мазинга для изменения функции пластичности при циклическом деформировании. Сформулированы локальные задачи теории пластичности для ячейки периодичности композиционного материала, а также осредненные задачи теории анизотропной пластичности при циклическом нагружении. Разработан программный модуль для конечно-элементного решения локальных задач на ячейке периодичности. Использовано программное обеспечение комплекса SMCM, разработанного в Научно-образовательном центре «Суперкомпьютерное инженерное моделирование и раз-работка программных комплексов» (НОЦ «Симплекс») МГТУ им. Н.Э. Баумана. Комплекс SMCM предназначен для конечно-элементного моделирования свойств композиционных материалов. Проведены численные расчеты упруго–пластических свойств дисперсно–армированных композитов на основе алюминиевого сплава и керамических частиц SiC. Расчеты показали, что разработанная методика может быть использована для прогнозирования циклических диаграмм деформирования упруго–пластических композитов в широком диапазоне условий нагружения, а также для проектирования новых композиционных материалов с заданными свойствами.
Димитриенко Ю.И., Сборщиков С.В., Юрин Ю.В. Моделирование эффектив-ных упруго–пластических свойств композитов при циклическом нагружении. Ма-тематическое моделирование и численные методы, 2020, № 4, с. 3–26.
doi: 10.18698/2309-3684-2018-4-7292
Рассмотрена модель эффективных определяющих соотношений трансверсально-изотропного несжимаемого композита с конечными деформациями. Модель от-носится к так называемомому классу универсальных моделей, связывающих сразу несколько пар энергетических тензоров напряжений и деформаций. Предложен метод разделения связанных задач микро- и макроскопического деформирования композитов с конечными деформациями, которые возникают при использовании метода асимптотического осреднения (МАО) периодических структур. Метод основан на применении модели эффективных определяющих соотношений в каче-стве аппроксимационной зависимости результатов численного моделирования диаграмм деформирования композитов, полученных с помощью точного метода МАО. Для нахождения упругих констант модели трансверсально-изотропного композита применяется метод минимизации отклонения аппроксимационных диа-грамм деформирования от диаграмм, полученных методом МАО, для серии стан-дартных задач деформирования при конечных деформациях. Задачи минимизации решались с помощью метода Нелдера—Мида. Представлены результаты числен-ного моделирования предложенным методом для нелинейно-упругих слоистых композитов, показавших хорошую точность аппроксимации, которая достигает-ся благодаря предложенному методу разделения связанных задач микро- и макро-
скопического деформирования.
Димитриенко Ю.И., Губарева Е.А., Каримов С.Б., Кольжанова Д.Ю. Модели-рование эффективных характеристик трансверсально-изотропных несжимаемых композитов с конечными деформациями. Математическое моделирование и чис-ленные методы, 2018, № 4, с. 72–92.
doi: 10.18698/2309-3684-2020-3-2246
Рассмотрена задача о расчете интегральных характеристик вязкоупругости композиционных материалов, исходя из информации об аналогичных характеристиках компонентов композита и его микроструктуры. Предложен алгоритм для прогнозирования эффективных ядер релаксации и ползучести композитов с произвольной микроструктурой армирования. Алгоритм основан на использовании преобразования Фурье и обратного преобразования Фурье, а также метода асимптотического осреднения для композитов при установившихся полигармонических колебаниях. В алгоритме используются экспоненциальные ядра релаксации и ползучести для исходных компонентов композита. Основой вычислительной процедуры предложенного алгоритма является конечно-элементное решение локальных задач вязкоупру-гости на ячейке периодичности композита. Результатом применения алгоритма является определение параметров экспоненциальных ядер релаксации и ползучести композиционных материалов, что позволяет получить решение задачи в полностью замкнутом виде. В качестве примера проведено численное моделирование вязкоупругих характеристик однонаправленно-армированных композитов на основе углеродных волокон и эпоксидной матрицы. Показано, что разработанный алгоритм позволяет получать эффективные ядра релаксации и ползучести композита с высокой точностью, без осцилляций, которые, как правило, сопровождают, методы обращения преобразований Фурье.
Димитриенко Ю.И., Юрин Ю.В., Сборщиков С.В., Яхновский А.Д., Баймурзин Р.Р. Моделирование эффективных ядер релаксации и ползучести вязко-упругих композитов методом асимптотического осреднения. Математическое моделирование и численные методы, 2020, № 3, с. 22–46.
doi: 10.18698/2309-3684-2016-1-105122
На основе разработанной авторами ранее модели многомерных сплошных сред в пространствах высокой размерности (более трех) предложена концепция применения этой модели для одной из главных задач, возникающих в теории обработки больших массивов данных — прогнозирования динамики изменения кластеров данных. Модель многомерных сплошных сред в пространствах высокой размерности включает в себя интегральные законы сохранения, которые сформулированы для кластеров информационных данных, а также модель кинематики движения и деформации кластеров. Разработана модель деформируемого многомерного кластера, движение которого в многомерном пространстве данных включает в себя поступательное, вращательное движение и однородную деформацию растяжения-сжатия. Сформулирована система дифференциальных тензорных уравнений, описывающих движение деформируемого многомерного кластера во времени. Разработан численный алгоритм решения этой системы дифференциальных уравнений для эллипсоидальной модели многомерного кластера. Рассмотрен пример применения разработанной модели для прогнозирования динамики экономических данных — данных о покупках товаров в крупном супермаркете. Приведены результаты прогнозирования данных о покупках различных групп покупателей.
Димитриенко Ю. И., Димитриенко О. Ю. Модель многомерной деформируемой сплошной среды для прогнозирования динамики больших массивов индивидуальных данных. Математическое моделирование и численные методы, 2016, №1 (9), c. 105-122
doi: 10.18698/2309-3684-2015-4-7591
Рассмотрено применение конечно-элементного метода RKDG (Runge — Kutta discontinuous Galerkin) для численного интегрирования трехмерной системы уравнений идеального газа на неструктурированных сетках. Проведено решение двух тестовых задач с помощью представленного алгоритма. Для каждой задачи приведено сравнение с известными аналитическими решениями или же с табличными данными. Дана оценка погрешности решения.
Димитриенко Ю. И., Коряков М. Н., Захаров А. А. Применение метода RKDG для численного решения трехмерных уравнений газовой динамики на неструктурированных сетках. Математическое моделирование и численные методы, 2015, №4 (8), c. 75-91
doi: 10.18698/2309-3684-2021-3-4261
Рассматривается сопряженная задача высокоскоростной аэротермодинамики и внутреннего тепломассопереноса в теплозащитных конструкциях возвращаемых космических аппаратов из аблирующих полимерных композиционных материалов. Для определения тепловых потоков в ударном слое возвращаемого аппарата учитывается химический состав атмосферы. Сформулирована математическая постановка сопряженной задачи и предложен алгоритм численного решения. Представлен пример численного решения задачи для возвращаемого космического аппарата Stardust. Показано, что учет химических реакций в потоке газа, обтекающем поверхность возвращаемого аппарата, является существенным для корректного определения температуры газа в пограничном слое. Показано также, что разработанная численная методика решения задачи позволяет определять параметры фазовых превращений в теплозащитной конструкции в зависимости от времени нагрева, в частности позволяет рассчитывать поле порового давления газообразных продуктов терморазложения полимерного композита, которое при определенных условиях может привести к разрушению материала.
Димитриенко Ю.И., Коряков М.Н., Юрин Ю.В., Захаров А.А., Сборщиков С.В., Богданов И.О. Сопряженное моделирование высокоскоростной аэротермодинамики и внутреннего тепломассопереноса в композитных аэрокосмических конструкциях. Математическое моделирование и численные методы, 2021, № 3, с. 42–61.
doi: 10.18698/2309-3684-2024-3-1842
Рассмотрена проблема разработки универсального критерия длительной усталостной прочности изотропных материалов, у которых накопление повреждений существенно отличается при нагружении в области растяжения и сжатия. Обычно для моделирования долговечности таких материалов применяют диаграммы Гудмана, в которых учитывается зависимость долговечности от коэффициента асимметрии нагружения. Однако, эта модель, как правило содержит только одну так называемую S-N кривую, в следствие чего кривые усталостной долговесности при разных коэффициентах асимметрии оказываются самоподобными, что далеко не всегда наблюдается в экспериментальных данных. Кроме того, диаграммы Гудмана применимы только для циклических нагружений. В данной статье предложено дальнейшее развитие «химического» критерия, который был разработах ранее в авторских работах, и который применим для широкого спектра нагрузок, как длительных статических, так и циклических с произвольной формой цикла нагружения. Развитие «химического» критерия усталостной прочности осуществлено за счет раздельного учета накоплений повреждений в области растяжения и сжатия. Для смешанных режимов нагружения в области растяжения-сжатия происходит суммирование особым образом накопления повреждений на участках растяжения и сжатия. Разработана методика определения констант предложенной модели усталостной долговечности. Показано, как строятся диаграммы Гудмана для разработанного варианта критерия усталостной долговечности. Рассмотен пример применения «химического» критерия для моделирования усталостной долговечности стали 34СrNiMo6.
Димитриенко Ю.И., Димитриенко А.Ю. «Химический» критерий для моделирования усталостной долговечности материалов, разносопротивляющихся растяжению-сжатию. Математическое моделирование и численные методы, 2024, № 3, с. 18–42.
doi: 10.18698/2309-3684-2016-3-323
Разработана многоуровневая модель для многомасштабного деформирования трехслойных (сэндвичевых) конструкций из полимерных композиционных материалов типа пластин с заполнителем на основе пенопласта, учитывающая микромеханические процессы деформирования и повреждаемости матрицы, армирующего наполнителя и пенопласта, а также макроскопические дефекты типа непропитки композитных обшивок. Проведено конечно-элементное моделирование напряженно-деформированного состояния, повреждаемости и разрушения трехслойных пластин с обшивками из гибридных композитов из углепластика, с различными размерами дефекта типа непропитки, при изгибе равномерным давлением. Установлены особенности процесса деформирования и повреждаемости данного типа композитных конструкций. Разработанная методика может быть применена для расчета деформирования, повреждаемости и разрушения трехслойных пластин из полимерных композиционных материалов, применяемых в различных отраслях промышленности: судостроении, авиастроении, ракетостроении.
Димитриенко Ю. И., Юрин Ю. В., Федонюк Н. Н. Численное моделирование деформирования и прочности трехслойных композитных конструкций с дефектами. Математическое моделирование и численные методы, 2016, №3 (11), c. 3-23
doi: 10.18698/2309-3684-2015-1-6782
Предложена методика численного конечно-элементного решения задачи овализации, которую используют при экспериментальной отработке новых материалов для авиационной промышленности, в целях определения сопротивления деформированию элементов конструкций с наличием концентраторов напряжений, главным образом, соединительных элементов. Методика основана на трехмерном конечно-элементном решении задачи упругопластического деформирования пластин с отверстием при смятии и предназначена для сокращения экспериментальных исследований путей замены их на численные эксперименты. Используется модель малых упругопластических деформаций Ильюшина. Представлены результаты численного моделирования трехмерного напряженно-деформированного состояния упругопластических пластин при смятии, а также результаты экспериментальных исследований деформирования пластин из алюминиевого сплава 163. Показано, что результаты численного и экспериментального моделирования деформирования пластин при смятии достаточно хорошо совпадают.
Димитриенко Ю. И., Губарева Е. А., Сборщиков С. В., Ерасов В. С., Яковлев Н. О. Численное моделирование и экпериментальное исследование деформирования упругопластических пластин при смятии. Математическое моделирование и численные методы, 2015, №1 (5), c. 67-82
doi: 10.18698/2309-3684-2014-3-324
Предложен алгоритм численного моделирования сопряженных аэрогазодинамических и термомеханических процессов в композитных конструкциях высокоскоростных летательных аппаратов, который позволяет рассчитывать все параметры трехмерного аэрогазодинамического потока в окрестности поверхности аппарата, теплообмен на поверхности, процессы внутреннего тепломассопереноса в конструкции из термодеструктирующего полимерного композитного материала, а также процессы изменения термодеформирования композитной конструкции, включающие в себя эффекты изменения упругих характеристик композита, переменную тепловую деформацию, усадку, вызванную термодеструкцией, образование внутрипорового давления газов в композите. Приведен пример численного моделирования сопряженных процессов в модельной композитной конструкции высокоскоростного летательного аппарата, иллюстрирующий возможности предложенного алгоритма.
Димитриенко Ю. И., Коряков М. Н., Захаров А. А., Строганов А. С. Численное моделирование сопряженных аэрогазодинамических и термомеханических процессов в композитных конструкциях высокоскоростных летательных аппаратов. Математическое моделирование и численные методы, 2014, №3 (3), c. 3-24
doi: 10.18698/2309-3684-2017-4-4859
Предложен метод численного решения обратных трехмерных задач восстановления полей нагрузок, действующих на композитные элементы конструкций, на основе известной информации об их перемещениях на некоторой поверхности. Задачи данного типа возникают при создании систем встроенной диагностики перемещений конструкций и интеллектуальных композитных конструкций. Восстановленное поле нагрузок, действующих на части внешней поверхности композитной конструкции, используется для расчета напряженно-деформированного состояния и прогнозирования ресурса конструкции. Предложенный метод базируется на альтернирующем алгоритме решения обратных задач восстановления нагрузок в задаче теории упругости и методе конечного элемента для решения прямых задач теории упругости. Рассмотрен пример решения обратной задачи восстановления нагрузок, воздействующих на элементы конструкций из слоисто-волокнистых композиционных материалов.
Димитриенко Ю.И., Юрин Ю.В., Еголева Е.С. Численное решение обратных трехмерных задач восстановления нагрузок, действующих на композитные элемен- ты конструкций. Математическое моделирование и численные методы, 2017, No 4, с. 48–59.