539.3 Finite-element modeling of thermal stresses in composite structures with thermal decomposition under aerodynamic heating

Dimitrienko Y. I. (Bauman Moscow State Technical University), Koryakov M. N. (Bauman Moscow State Technical University), Yurin Y. V. (Bauman Moscow State Technical University), Zakharov A. A. (Bauman Moscow State Technical University)


doi: 10.18698/2309-3684-2019-2-1534

The coupled task of aero-thermo-mechanics of heat-loaded structures from thermally destructive polymer composite materials under the influence of an intense aerodynamic flow is considered. The mathematical formulation of the conjugate problem is formulated and algorithms for the numerical solution of this problem are proposed. The algorithms are based on an iterative solution of three types of problems: aerodynamics, internal heat and mass transfer, and thermomechanics of the modeling aircraft structure. An example of a numerical solution to the problem for an aircraft structural element in the form of a blunt cone is presented. It is shown that the effect of high temperatures of aerodynamic heating of the structure leads to thermal degradation of the polymer composite material, which results in the generation of a large amount of gases in the pores and thermo-chemical shrinkage, which under certain conditions can lead to premature destruction of the heat-loaded composite structure.

[1] Riccio A., Raimondo F., Sellitto A., Carandente V., Scigliano R., Tescione D. Optimum design of ablative thermal protection systems for atmospheric entry vehicle. Applied Thermal Engineering, 2017, no. 119, pp. 541–552.
[2] Lancelle D., Božić O. Simulation of an ablative thermal protection system for the hypersonic ascend of an electromagnetically launched payload carrier. Proceedings of 5th European Conference for Aeronautics and Space Sciences (EUCASS), 2013, 12 p.
[3] Eekelen T., Bouilly J.-M., Hudrisier S., Dupillier J.-M., Aspa Y. Design and numerical modelling of charring material ablators for re-entry applications. Proceedings of the Sixth European Workshop on Thermal Protection Systems and Hot Structures, University Stuttgart, Germany, 2009, European Space Agency – WPP319.
[4] Liu Z., Hao A., Zhang S., Dessureault Y.-S., Liang R. Lightweight carbon nanotube surface thermal shielding for carbon fiber/bismaleimide composites. Carbon, 2019, vol. 153, pp.320– 329. DOI: 10.1016/j.carbon.2019.07.018
[5] Dimitrienko Yu.I. Mekhanika kompozitnyh konstrukcij pri vysokih temperaturah [Mechanics of composite structures at high temperatures]. Moscow, Fizmatlit Publ., 2009, 624 p.
[6] Dimitrienko Yu.I. A structural thermomechanical model of textile composite materials at high temperatures. Composite science and technologies, 1999,
vol. 59, pp. 1041–1053.
[7] Dimitrienko Yu.I. Thermomechanical behaviour of composite materials and structures under high temperatures. Part 2. Structures. Composites. Part A:
Applied Science and Manufacturing, 1997, vol. 28A, рр. 463–471.
[8] Dimitrienko Yu.I., Zakharov A.A., Koryakov M.N., Syzdykov E.K., Minin V.V. Inzhenernyy zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2013, no. 9. Available at:
[9] Dimitrienko Yu.I., Zakharov A.A., Koryakov M.N., Syzdykov E.K. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie — Proceedings of Higher Educational Institutions. Machine Building, 2014, no. 3, pp. 23–34.
[10] Dimitrienko Yu.I., Koryakov M.N., Zakharov A.A., Stroganov A.S. Matematicheskoe modelirovanie i chislennye metody — Mathematical modeling and Computational Methods, 2014, no. 3 (3), pp. 3–24.
[11] Dimitrienko Yu.I., Koryakov M.N., Zakharov A.A. Izvestiya Samarskogo nauchnogo centra Rossijskoj akademii — nauk Izvestia of Samara Scientific Center of the Russian Academy of Sciences, 2016, vol. 18, no. 2 (3), pp. 891–895.
[12] Dimitrienko Yu.I., Kotenev V.P., Zakharov A.A. Metod lentochnykh adaptivnykh setok dlya chislennogo modelirovaniya v gazovoy dinamike [Adaptive tape grid method for computational simulation in gas dynamics]. Moscow, FIZMATLIT PUBL., 2011, 280 p.
[13] Krasnov N.F. Aerodinamika. T.1. Osnovy teorii. Aerodinamika profilya i kryla [Aerodynamics. Vol. 1. Fundamentals of theory. Airfoil and wing aerodynamics]. Moscow, Vysshaya shkola Publ., 1980, 496 p.
[14] Krasnov N.F. Aerodinamika. T.2. Metody aerodinamicheskogo rascheta [Aerodynamics. Vol. Methods of aerodynamic calculation]. Moscow, Vysshaya shkola Publ., 1980, 416 p.
[15] Dimitrienko Yu.I. Tensor analysis and nonlinear tensor functions. Springer, 2002, 662 p.
[16] Anderson J.D. Hypersonic and High-Temperature Gas Dynamics. 2nd edition. American Institute of Aeronautics and Astronautics, Reston, Virginia, 2006, 232 p.
[17] Kulikovskiy A.G., Pogorelov N.V., Semenov A.Yu. Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravneniy [Mathematical problems on numerical solution of hyperbolic equation systems]. Moscow, Fizmatlit Publ., 2012, 656 p.
[18] Dimitrienko Yu.I., Koryakov M.N., Zakharov A.A., Syzdykov E.K. Vestnic MGTU im. N.E. Baumana. Seria Estestvennye nauki — Herald of Bauman Moscow State Technical University. Series: Natural Sciences, 2011, no. 2, pp. 87–97.
[19] Dimitrienko Yu.I., Koryakov M.N., Zakharov A.A. Matematicheskoe modelirovanie i chislennye metody — Mathematical modeling and Computational Methods, 2015, no. 4, pp. 75–91.

Димитриенко Ю.И., Коряков М.Н., Юрин Ю.В., Захаров А.А. Конечно-элементное моделирование термонапряжений в композитных термодеструктирующих конструкциях при аэродинамическом нагреве. Математическое моделирование и численные методы, 2019, № 2, с. 15–34.

Download article

Количество скачиваний: 87