and Computational Methods

doi: 10.18698/2309-3684-2014-4-1836

The suggested thermocreep theory for thin multilayer plates is based on analysis of general three dimensional nonlinear theory of thermalcreep by constructing asymptotic expansions in terms of a small parameter being the ratio of a plate thickness and a characteristic length. Here we do not introduce any hypotheses on a distribution character for displacements and stresses through the thickness. Local problems were formulated for finding stresses in all structural elements of a plate. It was shown that the global (averaged by the certain rules) equations of the plate theory were similar to equations of the Kirchhoff–Love plate theory, but they differed by a presence of the three-order derivatives of longitudinal displacements. The method developed allows to calculate all six components of the stress tensor including transverse normal stresses and stresses of interlayer shear. For this purposes one needs to solve global equations of thermal creep theory for plates, and the rest calculations are reduced to analytical formulae use.

Dimitrienko Y., Gubareva E., Yurin Y. Asymptotic theory of thermocreep for multilayer thin plates. Маthematical Modeling and Coтputational Methods, 2014, №4 (4), pp. 18-36

doi: 10.18698/2309-3684-2017-3-4970

The study centers around a technique developed for modeling damageability of laminated composite structures with defects of the delamination type under cyclic loading. The procedure consists of 3 stages iteratively repeated in time: finite element simulation of a macroscopic stress-strain state of the structure with defects; simulation of the microscopic stress-strain state near the defects; modeling the damage accumulation in the matrix, which connects the layers of reinforcing fibers near the defect. The model takes into account the curvilinear anisotropy of the composite material in the structure of complex geometric shapes. The study gives an example of a numerical calculation of a fragment of a composite structure of a helicopter carrier blade, taking into consideration the defect of the delamination type. The results suggest that there is a possibility of using the developed technique for damageability modeling in complex composite structures. The finite-element solution of the macroscopic problem is found by means of the SMCM software platform developed at the Scientific and Educational Center for Supercomputer Engineering Modeling and Software Development (SEC “SIMPLEX”) of Bauman Moscow State Technical University.

Dimitrienko Yu.I. ,Yurin Yu.V. Finite element modeling of damageability and durability of composite structures with local delaminations .Маthematical Modeling and Computational Methods, 2017, №3 (15), pp. 49–70

doi: 10.18698/2309-3684-2019-2-1534

The coupled task of aero-thermo-mechanics of heat-loaded structures from thermally destructive polymer composite materials under the influence of an intense aerodynamic flow is considered. The mathematical formulation of the conjugate problem is formulated and algorithms for the numerical solution of this problem are proposed. The algorithms are based on an iterative solution of three types of problems: aerodynamics, internal heat and mass transfer, and thermomechanics of the modeling aircraft structure. An example of a numerical solution to the problem for an aircraft structural element in the form of a blunt cone is presented. It is shown that the effect of high temperatures of aerodynamic heating of the structure leads to thermal degradation of the polymer composite material, which results in the generation of a large amount of gases in the pores and thermo-chemical shrinkage, which under certain conditions can lead to premature destruction of the heat-loaded composite structure.

Димитриенко Ю.И., Коряков М.Н., Юрин Ю.В., Захаров А.А. Конечно-элементное моделирование термонапряжений в композитных термодеструктирующих конструкциях при аэродинамическом нагреве. Математическое моделирование и численные методы, 2019, № 2, с. 15–34.

doi: 10.18698/2309-3684-2015-3-101118

A model for calculation of a rock stress-strain state considering creep is suggested. The algorithm for finite element solving the three-dimensional creep problem using finite-difference scheme of Euler's method with respect to time is presented. The specialized software is developed allowing the computer to build 3D-models of rock areas based on the initial series of 2D images, obtained with the seismic data, and to perform finite element calculation of variations in rock strain-stress state with time. Numerical simulation of rock stress-strain state was conducted on the example of a zone of the Astrakhan oil and gas field. It was found that there occurs rock mass rising in some points, and in the other points it can slope down with time. The creep rate of different layers is not the same — the highest values of the creep rate are realized in the layers of clay and sand, filled with fluid, which have the most notable creep properties. The developed algorithm and software for numerical simulation proved to be quite effective and can be applied to the study of rock stress-strain state.

Dimitrienko Y., Yurin Y. Finite element simulation of the rock stress-strain state under creep. Маthematical Modeling and Coтputational Methods, 2015, №3 (7), pp. 101-118

doi: 10.18698/2309-3684-2016-4-4766

We developed a multiscale model of deformation of thin multilayer composite plates with solitary defects. The model is based on the asymptotic analysis of general threedimensional equations of deformable solid mechanics. The general solution of threedimensional equations is reduced to the solution of two classes of problems: problems for thin plates without defects and local three-dimensional problems in the vicinity of the defect with the condition of damping solution at the distance from the defect. A solution of local problems is used for averaged problems of the multilayer plates theory, which enables us to find an explicit solution for all six components of the stress tensor in the field without the defect, based on the solution of the averaged two-dimensional problem of the plate theory. In the defect area the general solution is a superposition of the two solutions: the one obtained on the basis of the plates theory and local three-dimensional mechanics problems. The paper gives an example of a numerical finite element solution of the local mechanics problem for the three-layer composite plate with a solitary defect in the middle layer. Moreover, findings of the research show that the defect impact is localized in its immediate vicinity and the maximum transverse stress concentration is achieved in the vicinity of the defect peak.

Dimitrienko Y., Yurin Y. Multiscale modeling of thin multilayer composite plates with solitary defects. Маthematical Modeling and Coтputational Methods, 2016, №4 (12), pp. 47-66

doi: 10.18698/2309-3684-2016-3-323

The purpose of this research was to develop a multilevel model for multiscale deformation of three-layer (sandwich) structures made of polymeric composite materials such as plates with a foam based filler. We took into account the micromechanical processes of deformation and damageability in the matrix and reinforcing filler and foam, as well as macroscopic defects such as non-impregnation of the composite skins. First, we did a finite element modeling of stress-strain state, damageability and destruction of the sandwich plates with skins made of hybrid carbon fiber composites, with different types of defect such as non-impregnation, under the flexural uniform pressure. Then we found the characteristic features of the deformation and damageability process in this type of composite structures. Finally, we developed a method which can be used to calculate the deformation, damageability and destruction of sandwich plates made of polymer composite materials applied in various industries: shipbuilding, aviation, rocketry.

Dimitrienko Y., Yurin Y., Fedonyuk N. Numerical modeling of deformation and strength of sandwich composite structures with defects. Маthematical Modeling and Coтputational Methods, 2016, №3 (11), pp. 3-23

doi: 10.18698/2309-3684-2017-4-4859

The article proposes a numerical method for solving the inverse three-dimensional problems of recovering the fields of loads acting upon composite structural elements based on the results of the experimental diagnostics of structural displacements on a certain surface. The problems of this type arise when creating the systems of the built-in diagnostics of structural movements and intelligent composite structures. The restored field of loads acting upon the parts of the outer surface of the composite structure is used to calculate the stress-strain state and forecast the structural life. The proposed method uses an alternating algorithm for solving the inverse problems of restoring loads in the problem of elasticity theory, in combination with the finite element method for solving the direct problems in the theory of elasticity. We consider an example of solving the inverse problem of restoring loads acting on the structural elements made from layered fibrous composite materials.

Dimitrienko Yu.I., Yurin Yu.V., Egoleva E.S. Numerical solution of inverse three-dimensional problems of recovering the loads acting upon composite structural elements. Mathematical Modeling and Computational Methods, 2017, №4 (16), pp. 48-59

doi: 10.18698/2309-3684-2018-1-1640

The paper presents a new modification of asymptotic theory describing thin multi-layered shells with finite shear rigidity. It is based on asymptotic analysis of general threedimensional equations from the elasticity theory for multi-layered bodies. This modification allows us to derive averaged equations from a Timoshenko-type plate theory. We identified the small geometrical parameter and used it to carry out our asymptotic analysis. We stated local elasticity theory problems which may be solved analytically. We show that when only the dominant terms of asymptotic expansions are taken into account, an asymptotic theory will result in the averaged plate equations of the Kirchhoff — Love type. When taking into account those terms that follow the dominant ones in asymptotic series in a self-similar way as compared to the previous approximation, an asymptotic theory will lead to Timoshenko-type averaged equations. At the same time, theoretical accuracy of the resulting truncated asymptotic solution is as high as that of the solution according to a Kirchhoff — Love type theory. The asymptotic theory modification that we developed makes it possible to use explicit analytical expressions to compute all six stress tensor components for a multi-layered plate with a high degree of accuracy. We used our method to perform a numerical simulation of stresses and displacements in a multi-layered plate subjected to uniform pressure that causes the plate to bend. Numerical computations show that our Timoshenko-type asymptotic theory provides a similarly high accuracy of computing flexural, shear and lateral stresses as compared to a three-dimensional finite element solution over a very fine mesh and a Kirchhoff — Love-type asymptotic theory. A Timoshenko-type theory will provide a better result for computing buckling than a Kirchhoff — Love-type theory, especially for relatively short plates. When the displacement is longitudinal, a Timoshenko-type theory will only provide a good result for elongated plates.

Димитриенко Ю.И., Юрин Ю.В. Асимптотическая теория типа Тимошенко для тонких многослойных пластин. Математическое моделирование и численные методы, 2018, № 1, с. 16-40