539.3 Finite element modeling of elastic properties of textile polymer composites at high temperatures

Dimitrienko Y. I. (Bauman Moscow State Technical University), Yurin Y. V. (Bauman Moscow State Technical University), Sborschikov S. V. (Bauman Moscow State Technical University), Bogdanov I. O. (Bauman Moscow State Technical University), Yakhnovskiy A. D. (Bauman Moscow State Technical University), Baymurzin R. R. (Bauman Moscow State Technical University)


doi: 10.18698/2309-3684-2020-1-327

The problem of multilevel model development for calculating of an elastic property of polymer composite materials with a complex reinforcement structure at high temperatures is considered. It is assumed that thermal destruction processes take place in the matrix and fibers at high temperatures. In order to take into account the change in the elastic properties of the composite depending on the temperature and heating time, a 3-level structural model of the composite is proposed. At the lower level mono-fibers and a matrix consisting of 4 phases, the ratio between which changes when heated are considered. At this level, the analytical relations proposed earlier in the works of Yu.I. Dimitrienko. At the next level of the model, a unidirectional composite is considered, consisting of bundles of monofilaments and a matrix. To calculate elastic properties at this level, the method of asymptotic averaging is used, and a finite element algorithm for solving local problems of the theory of thermoelasticity arising in this method. At the 3rd structural level of the model, composites with complex reinforcement structures, in particular, fabric composites, are considered. The method of asymptotic averaging is also used to calculate the elastic properties of the composite at this level. For the numerical calculation of the elastic characteristics of polymer composites at high temperatures, specialized software has been developed that operates under the control of the SMCM software package created at the Scientific and Educational Center for Supercomputer Engineering Modeling and Development of Software Systems of the Bauman Moscow State Technical University. The article provides examples of the application of the developed multilevel model and software for textile composites based on an epoxy matrix and glass fibers. The values of all components of the tensor of the elastic moduli of the composite are calculated, which vary depending on the heating program of the composite. The microstress fields in the composite are obtained. A comparison is made of the fields of microstresses and effective elastic constants at normal temperatures, with similar values obtained using the ANSYS software package, which has been modified to enable the calculation of effective elastic constants in accordance with the proposed model. A very good agreement was obtained between the calculation results, both of the effective constants and of the microstresses fields, which allows us to speak of the high accuracy of the developed software.

[1] Asgar А., Sarath Raj N.S, Thadathil J. Varghese ablative heating technology in hypersonic re-entry vehicles and cruise aircrafts. International journal of recent technology and engineering, 2019, vol. 8, iss. 3, pp. 3007–3014.
[2] Smith T.R., Bowcutt G.K., Selmon J.R., Luis M., Northrop B., Mairs R., Unger E.R., Lau K.Y., Silvester T., Alesi H., Paull A., Paull R., Dolvin D.J. HIFiRE 4: a low-cost aerodynamics, stability, and control hypersonic flight experiment. Proceedings of 17th International space planes and hypersonic systems and technologies conference (AIAA), 2011, pp. 2011–2275.
[3] Bahramian A.R., Kokabi M., Famili M.H.N., Beheshty M.H. Ablation and thermal degradation behavior of a composite based on resol type phenolic resin: Process modeling and experimental. Polymer, 2006, no. 47, pp. 3661–3673.
[4] Riccio A., Raimondo F., Sellitto A., Carandente V., Scigliano R., Tescione D. Optimum design of ablative thermal protection systems for atmospheric entry vehicle. Applied Thermal Engineering, 2017, no. 119, pp. 541–552.
[5] Lancelle D., Božić O. Simulation of an ablative thermal protection system for the hypersonic ascend of an electromagnetically launched payload carrier. Proceedings of 5th European Conference for Aeronautics and Space Sciences (EUCASS), 2013, 12 p.
[6] Eekelen T., Bouilly J.-M., Hudrisier S., Dupillier J.-M., Aspa Y. Design and numerical modelling of charring material ablators for re-entry applications. Proceedings of the Sixth European Workshop on Thermal Protection Systems and Hot Structures, Germany, 2009, European Space Agency – WPP319.
[7] Liu Z., Hao A., Zhang S., Dessureault Y.-S., Liang R. Lightweight carbon nanotube surface thermal shielding for carbon fiber/bismaleimide composites. Carbon, 2019, vol. 153, pp.320– 329. DOI: 10.1016/j.carbon.2019.07.018
[8] Dimitrienko Yu.I. Mekhanika kompozitnyh konstrukcij pri vysokih temperaturah [Mechanics of composite structures at high temperatures]. Moscow, Fizmatlit Publ., 2018, 448 p.
[9] Strahov V.L., Krugov A.M., Davydkin N.F. Ognezashchita stroitel'nyh konstrukcij [Fire protection of building structures]. Moscow, TIMR Publ., 2000, 433 p.
[10] Akulov A.Yu., Aksenov A.V. Izvestiya vuzov. Neft' i gaz — Oil and Gas Studies, 2011, iss. 1, pp. 66–71.
[11] Dimitrienko Yu.I. Thermomechanical behaviour of composite materials and structures under high temperatures. Part 2. Structures. Composites. Part A: Applied Science and Manufacturing, 1997, vol. 28A, рр. 463–471.
[12] Dimitrienko Yu.I. A structural thermomechanical model of textile composite materials at high temperatures. Composite science and technologies, 1999, vol. 59, pp. 1041–1053.
[13] Dimitrienko Yu.I. Modelling of mechanical properties of composite materials under high temperatures. Part 3. Textile composites. Int. Journal of Applied Composite Materials, 1998, vol. 5, No 4, рр. 257–272.
[14] Dimitrienko Yu.I., Zakharov A.A., Koryakov M.N. Coupled problems of highspeed aerodynamics and thermomechanics of heat-shielding structures. IOP Journal of Physics: Conference Series, 2018, vol. 1141, art. 012094. DOI:10.1088/1742-6596/1141/1/012094
[15] Dimitrienko Yu.I., Zakharov A.A., Koryakov M.N., Syzdykov E.K. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie — Proceedings of Higher Educational Institutions. Machine Building, 2014, no. 3, pp. 23–34.
[16] Dimitrienko Yu.I., Koryakov M.N., Zakharov A.A., Stroganov A.S. Matematicheskoe modelirovanie i chislennye metody — Mathematical modeling and Computational Methods, 2014, no. 3 (3), pp. 3–24.
[17] Dimitrienko Yu.I., Koryakov M.N., Zakharov A.A. Izvestiya Samarskogo nauchnogo centra Rossijskoj akademii — nauk Izvestia of Samara Scientific Center of the Russian Academy of Sciences, 2016, vol. 18, no. 2 (3), pp. 891–895.
[18] Dimitrienko Yu.I., Koryakov M.N., Yurin Yu.V., Zakharov A.A. Matematicheskoe modelirovanie i chislennye metody — Mathematical modeling and Computational Methods, 2019, no. 2 (22), pp. 15–34.
[19] Dimitrienko Yu.I., Kashkarov A.I. Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki — Herald of the Bauman Moscow State Technical University. Series Natural Sciences, 2002, no. 2, pp. 45–108.
[20] Dimitrienko YU.I., Lucenko A.N., Gubareva E.A., Oreshko E.I., Bazyleva O.A., Sborshchikov S.V. Aviacionnye materialy i tekhnologii — Aviation materials and tecnologes, 2016, no. 3 (42), pp. 33–48.
[21] Dimitrienko Yu.I., Dimitrienko I.D., Sborschikov S.V. Multiscale hierarchical modeling of fiber reinforced composites by asymptotic homogenization method. Applied mathematical sciences, 2015, vol. 9, no. 145, рр. 7211–7220.
[22] Dimitrienko Yu.I. Mekhanika sploshnoj sredy. V 4-h t. T. 1. Tenzornyj analiz [Continuum Mechanics. In 4 vols. 1. Tensor analysis]. Moscow, BMSTU Publ., 2011, 367 p.
[23] Certificate no. 2019666174 Programma HighTempETextileManipula dlya prognozirovaniya modulej uprugosti tkanevyh polimernyh kompozitov pri vysokih temperaturah na osnove konechno-elementnogo resheniya zadach na yachejke periodichnosti [HighTempETextileManipula Program for predicting elastic modulus of fabric polymer composites at high temperatures based on finite element solution of problems on the periodicity cell]: certificate of ofic. registration of computer programs/ Yu.I. Dimitrienko, Yu.V. Yurin, S.V. Sborshchikov, I.O. Bogdanov; applicant and copyright holder: BMSTU – no. 2019665102; application 26.11.2019; registered in the register of computer programs 05.12.2019 – [1].

Димитриенко Ю.И., Юрин Ю.В., Сборщиков С.В., Богданов И.О., Яхновский А.Д., Баймурзин Р.Р. Конечно-элементное моделирование упругих свойств тканевых полимерных композитов при высоких температурах. Математическое моделирование и численные методы. 2020. № 1. с. 3–27

Download article

Количество скачиваний: 303