#### 539.3 Asymptotic theory of constructive-orthotropic plates with two-periodic structures

##### Dimitrienko Y. I. (Bauman Moscow State Technical University), Gubareva E. A. (Bauman Moscow State Technical University), Sborschikov S. V. (Bauman Moscow State Technical University)

doi: 10.18698/2309-3684-2014-1-3656

The theory of thin constructive-orthotropic plates with a two-periodic structure was suggested. Examples of such structures are honeycomb sandwich panels and backed plates. The theory is based on equations of a three-dimensional elasticity theory with the help of asymptotic expansions in terms of a small parameter being the ratio of a plate thickness and a characteristic length without introducing any hypotheses on a distribution character for displacements and stresses through the thickness. Local problems were formulated for finding stresses in all structural elements of a plate. It was shown that the global (averaged by the certain rules) equations of the plate theory are similar to equations of the

Dimitrienko Y., Gubareva E., Sborschikov S. Asymptotic theory of constructive-orthotropic plates with two-periodic structures. Маthematical Modeling and Coтputational Methods, 2014, №1 (1), pp. 36-56

#### 539.3 Computational modeling and experimental investigation of elastic-plastic plates deforming under crushing

##### Dimitrienko Y. I. (Bauman Moscow State Technical University), Gubareva E. A. (Bauman Moscow State Technical University), Sborschikov S. V. (Bauman Moscow State Technical University), Erasov V. S. (Federal State Unitary Enterprise “All-Russian Scientific Research Institute of Aviation Materials”), Yakovlev N. O. (Federal State Unitary Enterprise “All-Russian Scientific Research Institute of Aviation Materials”)

doi: 10.18698/2309-3684-2015-1-6782

The article presents a suggested method of numerical finite-element solving the ‘hole ovalization’ problem. This method can be applied for experimental development of advanced aviation materials with the aim of determining structure element resistance against deforming with stress concentrators, mainly, connectors. The method is based on three-dimensional finite element solution of the problem of lastoplastic deformation of plates with a hole under crushing. It is appropriate for reduction of xperimental studies and replacing them by the numerical experiments. The Ilyushin model of small lastoplastic deformations has been used. The results of numerical simulation of a threedimensional stress-strain state of elastoplastic plates under crushing are presented as well as results of experimental nvestigations of deforming plates of Al-alloy 163. It is shown that the results of numerical and experimental modeling for deforming plates under crushing agree quite well.

Dimitrienko Y., Gubareva E., Sborschikov S., Erasov V., Yakovlev N. Computational modeling and experimental investigation of elastic-plastic plates deforming under crushing. Маthematical Modeling and Coтputational Methods, 2015, №1 (5), pp. 67-82

#### 539.3 Coupled modeling of high-speed aerothermodynamics and internal heat and mass transfer in composite aerospace structures

##### Dimitrienko Y. I. (Bauman Moscow State Technical University), Koryakov M. N. (Bauman Moscow State Technical University), Yurin Y. V. (Bauman Moscow State Technical University), Zakharov A. A. (Bauman Moscow State Technical University), Sborschikov S. V. (Bauman Moscow State Technical University), Bogdanov I. O. (Bauman Moscow State Technical University)

doi: 10.18698/2309-3684-2021-3-4261

A coupled problem of high-speed aerothermodynamics and internal heat and mass transfer in heat-shielding structures of reentry spacecraft made of ablative polymer composite materials is considered. To determine the heat fluxes in the shock layer of the reentry vehicle, the chemical composition of the atmosphere is taken into account. The mathematical formulation of the conjugate problem is formulated and an algorithm for the numerical solution is proposed. An example of the numerical solution of the problem for the reentry spacecraft Stardust is presented. It is shown that taking into account chemical reactions in the gas flow around the surface of the reentry vehicle is essential for the correct determination of the gas temperature in the boundary layer. It is also shown that the developed numerical method for solving the problem makes it possible to determine the parameters of phase transformations in a heat-shielding structure depending on the heating time, in particular, it allows calculating the pore pressure field of gaseous products of thermal decomposition of a polymer composite, which, under certain conditions, can lead to material destruction.

мДимитриенко Ю.И., Коряков М.Н., Юрин Ю.В., Захаров А.А., Сборщиков С.В., Богданов И.О. Сопряженное моделирование высокоскоростной аэротермодинамики и внутреннего тепломассопереноса в композитных аэрокосмических конструкциях. Математическое моделирование и численные методы, 2021, № 3, с. 42–61.

#### 539.3 Finite element modeling of elastic properties of textile polymer composites at high temperatures

##### Dimitrienko Y. I. (Bauman Moscow State Technical University), Yurin Y. V. (Bauman Moscow State Technical University), Sborschikov S. V. (Bauman Moscow State Technical University), Bogdanov I. O. (Bauman Moscow State Technical University), Yakhnovskiy A. D. (Bauman Moscow State Technical University), Baymurzin R. R. (Bauman Moscow State Technical University)

doi: 10.18698/2309-3684-2020-1-327

The problem of multilevel model development for calculating of an elastic property of polymer composite materials with a complex reinforcement structure at high temperatures is considered. It is assumed that thermal destruction processes take place in the matrix and fibers at high temperatures. In order to take into account the change in the elastic properties of the composite depending on the temperature and heating time, a 3-level structural model of the composite is proposed. At the lower level mono-fibers and a matrix consisting of 4 phases, the ratio between which changes when heated are considered. At this level, the analytical relations proposed earlier in the works of Yu.I. Dimitrienko. At the next level of the model, a unidirectional composite is considered, consisting of bundles of monofilaments and a matrix. To calculate elastic properties at this level, the method of asymptotic averaging is used, and a finite element algorithm for solving local problems of the theory of thermoelasticity arising in this method. At the 3rd structural level of the model, composites with complex reinforcement structures, in particular, fabric composites, are considered. The method of asymptotic averaging is also used to calculate the elastic properties of the composite at this level. For the numerical calculation of the elastic characteristics of polymer composites at high temperatures, specialized software has been developed that operates under the control of the SMCM software package created at the Scientific and Educational Center for Supercomputer Engineering Modeling and Development of Software Systems of the Bauman Moscow State Technical University. The article provides examples of the application of the developed multilevel model and software for textile composites based on an epoxy matrix and glass fibers. The values of all components of the tensor of the elastic moduli of the composite are calculated, which vary depending on the heating program of the composite. The microstress fields in the composite are obtained. A comparison is made of the fields of microstresses and effective elastic constants at normal temperatures, with similar values obtained using the ANSYS software package, which has been modified to enable the calculation of effective elastic constants in accordance with the proposed model. A very good agreement was obtained between the calculation results, both of the effective constants and of the microstresses fields, which allows us to speak of the high accuracy of the developed software.

Димитриенко Ю.И., Юрин Ю.В., Сборщиков С.В., Богданов И.О., Яхновский А.Д., Баймурзин Р.Р. Конечно-элементное моделирование упругих свойств тканевых полимерных композитов при высоких температурах. Математическое моделирование и численные методы. 2020. № 1. с. 3–27

#### 539.3 Finite element modulation of effective viscoelastic properties of unilateral composite materials

##### Dimitrienko Y. I. (Bauman Moscow State Technical University), Gubareva E. A. (Bauman Moscow State Technical University), Sborschikov S. V. (Bauman Moscow State Technical University)

doi: 10.18698/2309-3684-2014-2-2848

We propose a method for calculating effective viscoelastic properties of composite materials under steady-state cyclical vibrations. The method is based on asymptotic averaging of periodic structures and finite-element solution of local problems of viscoelasticity in periodicity cells of composite materials. We provide examples of numerical simulation of viscoelastic properties for composites with unidirectional reinforcement, and of calculations of complex tensors of stress concentration in a periodicity cell. The paper presents a comparative analysis of dependencies of loss tangent of complex composite elasticity
modulus on vibration frequencies obtained through FEA calculations and rough mixed formulae. We show that rough mixed formulae, often used for calculating dissipative properties of composite materials, can yield appreciable calculation errors.

Dimitrienko Y., Gubareva E., Sborschikov S. Finite element modulation of effective viscoelastic properties of unilateral composite materials. Маthematical Modeling and Coтputational Methods, 2014, №2 (2), pp. 28-48

#### 539.36 Modeling microstructural model of the plasticity deformation theory for quasi-isotropic composite materials

##### Dimitrienko Y. I. (Bauman Moscow State Technical University), Sborschikov S. V. (Bauman Moscow State Technical University), Dimitrienko A. Y. (Lomonosov Moscow State University), Yurin Y. V. (Bauman Moscow State Technical University)

doi: 10.18698/2309-3684-2021-4-1744

A model of constitutive relations for elastic-plastic composites with cubic symmetry of properties is proposed. This class includes a significant number of composite materials: dispersed-reinforced composites, which have an ordered rather than a chaotic reinforcement system, as well as some types of spatially reinforced composites. To build a model of nonlinear constitutive relations, a tensor-symmetry approach was used, based on the spectral expansions of stress and strain tensors, as well as the spectral representation of nonlinear tensor relations between these tensors. The deformation theory of plasticity is considered, for which the tensor-symmetric approach is used, and specific models are proposed for plasticity functions that depend on the spectral invariants of the strain tensor. To determine the model constants, a method is proposed in which these constants are calculated based on the approximation of deformation curves obtained by direct numerical solution of three-dimensional problems on the periodicity cell of elastic-plastic composites. These problems arise in the method of asymptotic averaging of periodic media. To solve problems on a periodicity cell, a finite element method and special software was used that implements solutions to problems on periodicity cells, developed at the Scientific and Educational Center for Supercomputer Engineering Modeling and Development of Software Packages of Bauman Moscow State Technical University. An example of calculating the constants of a composite model using the proposed method for a dispersed-reinforced composite based on a metal matrix is considered. Also, the verification of the proposed model for various ways of multiaxial loading of the composite was carried out with direct numerical simulation. It is shown that the proposed microstructural model and the algorithm for determining its constants provide a sufficiently high accuracy in predicting the elastic-plastic deformation of the composite.

Димитриенко Ю.И., Сборщиков С.В., Димитриенко А.Ю., Юрин Ю.В. Микроструктурная модель деформационной теории пластичности квази-изотропных композиционных материалов. Математическое моделирование и численные методы, 2021, № 4, с. 17–44.

#### 539.36 Modeling microstructural model of the plasticity deformation theory for transversally isotropic composites

##### Dimitrienko Y. I. (Bauman Moscow State Technical University), Sborschikov S. V. (Bauman Moscow State Technical University), Dimitrienko A. Y. (Lomonosov Moscow State University), Yurin Y. V. (Bauman Moscow State Technical University)

doi: 10.18698/2309-3684-2022-1-1541

Within the framework of the deformation theory of plasticity under active loading, a model of constitutive relations for elastic-plastic composites belonging to the class of transversally isotropic materials is proposed. The theory of spectral expansions of stress and strain tensors and the spectral representation of nonlinear tensor functions for transversely isotropic media are used to develop a nonlinear constitutive relations. Specific models of plasticity functions are proposed, depending on the spectral invariants of the strain tensor. To determine the model constants, a method is proposed in which these constants are calculated based on the approximation of deformation curves obtained by direct numerical solution of three-dimensional problems on the periodicity cell of elastic-plastic composites. Problems on the periodicity cell are formulated using the method of asymptotic averaging of periodic media. The numerical solution of problems on the periodicity cell is carried out using the finite element method within the framework of software developed at the Scientific and Educational Center "Supercomputer Engineering Modeling and Development of Software Systems" of Bauman Moscow State Technical University. An example of numerical calculation of the constants of a composite model using the proposed method for a unidirectionally reinforced composite based on carbon fibers and an aluminum alloy matrix is given. Examples of verification of the proposed model for different loading trajectories of the composite in a 6-dimensional stress space are given. It is shown that the proposed microstructural model and the algorithm for determining its constants provide a sufficiently high accuracy in predicting the elastic-plastic deformation of transversely isotropic composites

Димитриенко Ю.И., Сборщиков С.В., Димитриенко А.Ю., Юрин Ю.В. Микроструктурная модель деформационной теории пластичности трансверсально-изотропных композитов. Математическое моделирование и численные методы, 2022, № 1, с. 15–41.

#### 539.3 Modeling of effective elastic–plastic properties of composites under cyclic loading

##### Dimitrienko Y. I. (Bauman Moscow State Technical University), Sborschikov S. V. (Bauman Moscow State Technical University), Yurin Y. V. (Bauman Moscow State Technical University)

doi: 10.18698/2309-3684-2020-4-326

A method is proposed for calculating the effective elastic–plastic properties of composites under cyclic loading. The technique is based on the application of the method of asymptotic averaging of periodic structures for the case of materials with elastic-plastic properties under cyclic loading. A model of the deformation theory of plasticity by A.A. Il’yushin – V.V. Moskvitin under cyclic loading using the Masing model for changing the plasticity function under cyclic deformation. Local problems of the theory of plasticity for the periodicity cell of a composite material, as well as averaged problems of the theory of anisotropic plasticity under cyclic loading are formulated. A software module has been developed for the finite element solution of local problems on the periodicity cell. The software of the SMCM complex developed at the Scientific and Educational Center "Supercomputer Engineering Modeling and Development of Software Systems" of the Bauman Moscow State Technical University was used. The SMCM complex is designed for finite element modeling of the properties of composite materials. Numerical calculations of the elastic-plastic properties of dispersed-reinforced composites based on an aluminum alloy and SiC ceramic particles have been carried out. Calculations have shown that the developed technique can be used to predict cyclic deformation diagrams of elastic-plastic composites in a wide range of loading conditions, as well as to design new composite materials with specified properties.

Димитриенко Ю.И., Сборщиков С.В., Юрин Ю.В. Моделирование эффектив-ных упруго–пластических свойств композитов при циклическом нагружении. Ма-тематическое моделирование и численные методы, 2020, № 4, с. 3–26.

#### 539.3 Modeling of effective relaxation and creep kernels of viscoelastic composites by asymptotic averaging method

##### Dimitrienko Y. I. (Bauman Moscow State Technical University), Yurin Y. V. (Bauman Moscow State Technical University), Sborschikov S. V. (Bauman Moscow State Technical University), Yakhnovskiy A. D. (Bauman Moscow State Technical University), Baymurzin R. R. (Bauman Moscow State Technical University)

doi: 10.18698/2309-3684-2020-3-2246

The problem of calculating the integral characteristics of the viscoelasticity of composite materials is considered, based on information on similar characteristics of the composite components and its microstructure. An algorithm is proposed for predicting the effective relaxation and creep kernels of composites with an arbitrary reinforcement microstructure. The algorithm is based on the Fourier transform application and the inverse Fourier transform, as well as the method of asymptotic averaging for composites under steady-state polyharmonic vibrations. The algorithm uses exponential relaxation and creep kernels for the initial components of the composite. The basis of the computational procedure of the proposed algorithm is the finite element solution of local viscoelasticity problems over the composite periodicity cell. The result of the algorithm application is the determination of the exponential relaxation and creep kernels parameters for composite materials, which makes it possible to obtain a problem solution in a completely closed form. As an example, a numerical simulation of the viscoelastic-tic characteristics of unidirectionally reinforced carbon /epoxy composites has been carried out. It is shown that the developed algorithm allows one to obtain effective relaxation and creep kernels of the composite with high accuracy, without oscillations, which, as a rule, ac-company the methods of inverting Fourier transforms.

Димитриенко Ю.И., Юрин Ю.В., Сборщиков С.В., Яхновский А.Д., Баймурзин Р.Р. Моделирование эффективных ядер релаксации и ползучести вязко-упругих композитов методом асимптотического осреднения. Математическое моделирование и численные методы, 2020, № 3, с. 22–46.

#### 539.3 Modeling the elastic-plastic characteristics of monocrystalline intermetallic alloys based on microstructural numerical analysis

##### Dimitrienko Y. I. (Bauman Moscow State Technical University), Gubareva E. A. (Bauman Moscow State Technical University), Sborschikov S. V. (Bauman Moscow State Technical University), Bazyleva O. A. (Federal State Unitary Enterprise “All-Russian Scientific Research Institute of Aviation Materials”), Lutsenko A. N. (Federal State Unitary Enterprise “All-Russian Scientific Research Institute of Aviation Materials”), Oreshko E. I. (Federal State Unitary Enterprise “All-Russian Scientific Research Institute of Aviation Materials”)

doi: 10.18698/2309-3684-2015-2-322

The article presents a model of microstructure of two-phase monocrystalline intermetallic alloys in the form of a periodic structure of the hexagonal type, as well as a mathematical model of elastic-plastic deformation of monocrystalline alloy, based on the method of asymptotic smoothing periodic structures. Deformation plasticity theory under loading is used for the phases with due regard for the effect of their damage level during loading. For numerical calculations of the developed model the heat-resistant monocrystalline alloy of the type VKNA-1V was used. Finite element calculations of deformation and fracture micromechanical processes in monocrystalline alloy of the type VKNA-1V were carried out. It was found that under tension maximum values of phase damagability, which determine the beginning of the alloy micro-fracture zone, are achieved in the areas adjacent to the phase interface and in areas of maximum curvature of the geometric shape of the phases. Calculations of heat-resistant alloy strain diagrams in plastic range are proved to be consistent with experimental data.

Dimitrienko Y., Gubareva E., Sborschikov S., Bazyleva O., Lutsenko A., Oreshko E. Modeling the elastic-plastic characteristics of monocrystalline intermetallic alloys based on microstructural numerical analysis. Маthematical Modeling and Coтputational Methods, 2015, №2 (6), pp. 3-22

#### 539.3+519.86 Multiscale modeling of elastic-plastic composites with an allowance for fault probability

##### Dimitrienko Y. I. (Bauman Moscow State Technical University), Gubareva E. A. (Bauman Moscow State Technical University), Sborschikov S. V. (Bauman Moscow State Technical University)

doi: 10.18698/2309-3684-2016-2-323

The purpose of this article is to propose a model of deformation of elastic-plastic composite materials with periodic structures with an allowance for fault probability of the composite phases. The model is based on a variant of the deformation theory of plasticity with the active loading. To simulate the effective characteristics of elastic-plastic composites, we applied the method of asymptotic homogenization of periodic structures. For numerical solution of linearized problems on the periodicity cell we offered the finite elements method using SMCM software medium developed at the Scientific-Educational Center of Supercomputer Engineering Modeling and Program Software Development of the Bauman Moscow State Technical University. We provide the research with the examples of numerical computations for dispersion-reinforced metal composites (aluminum matrix filled with SiC particles). Finally, we present the results of numerical modeling of deformation processes, damage accumulation and metal-composite destruction.

Dimitrienko Y., Gubareva E., Sborschikov S. Multiscale modeling of elastic-plastic composites with an allowance for fault probability. Маthematical Modeling and Coтputational Methods, 2016, №2 (10), pp. 3-23