doi: 10.18698/2309-3684-2024-3-1842
The problem of developing a universal criterion for long-term fatigue strength of isotropic materials, in which the accumulation of damage differs significantly under loading in the region of tension and compression, is considered. Usually, to model the durability of such materials, Goodman diagrams are used, which take into account the dependence of durability on the load asymmetry coefficient. However, this model, as a rule, contains only one so-called S-N curve, as a result of which the fatigue life curves at different asymmetry coefficients turn out to be self-similar, which is not always observed in experimental data. In addition, Goodman diagrams are only applicable for cyclic loading. This article proposes a further development of the “chemical” criterion, which was previously developed in the author’s works, and which is applicable for a wide range of loads, both long-term static and cyclic with a random form of the loading cycle. The development of the “chemical” criterion for fatigue strength was carried out by separately taking into account the accumulation of damage in the areas of tension and compression. For mixed loading modes in the tension-compression region, a special layer accumulates damage in the tension and compression areas. A method for determining the constants of the proposed fatigue life model has been developed. It is shown how Goodman diagrams are constructed for the developed version of the fatigue life criterion. An example of using the “chemical” criterion to simulate the fatigue life of 34CrNiMo6 steel is considered.
Димитриенко Ю.И., Димитриенко А.Ю. «Химический» критерий для моделирования усталостной долговечности материалов, разносопротивляющихся растяжению-сжатию. Математическое моделирование и численные методы, 2024, № 3, с. 18–42.
539.36 Microstructural model anisotropic flow theory for elastic-plastic layered composites
doi: 10.18698/2309-3684-2022-3-4770
A microstructural model of layered elastic-plastic composites based on the anisotropic flow theory is proposed. The model represents the effective constitutive relations of the transversally isotropic theory of plastic flow, in which the model constants are determined not experimentally, but on the basis of approximations of the deformation curves of composites obtained by direct numerical solution of problems on the periodicity cell for basic loading trajectories, which arise in the method of asymptotic averaging. The problem of identifying the constants of this composite model is formulated; for the numerical solution of this problem, methods of optimizing the error functional are used. The results of numerical simulation by the proposed method for layered elastic-plastic composites are presented, which showed good accuracy of approximation of numerical strain diagrams.
Димитриенко Ю.И., Черкасова М.С., Димитриенко А.Ю. Микроструктурная модель анизотропной теории течения для упруго-пластических слоистых композитов. Математическое моделирование и численные методы, 2022, № 3, с. 47–70.
doi: 10.18698/2309-3684-2021-4-1744
A model of constitutive relations for elastic-plastic composites with cubic symmetry of properties is proposed. This class includes a significant number of composite materials: dispersed-reinforced composites, which have an ordered rather than a chaotic reinforcement system, as well as some types of spatially reinforced composites. To build a model of nonlinear constitutive relations, a tensor-symmetry approach was used, based on the spectral expansions of stress and strain tensors, as well as the spectral representation of nonlinear tensor relations between these tensors. The deformation theory of plasticity is considered, for which the tensor-symmetric approach is used, and specific models are proposed for plasticity functions that depend on the spectral invariants of the strain tensor. To determine the model constants, a method is proposed in which these constants are calculated based on the approximation of deformation curves obtained by direct numerical solution of three-dimensional problems on the periodicity cell of elastic-plastic composites. These problems arise in the method of asymptotic averaging of periodic media. To solve problems on a periodicity cell, a finite element method and special software was used that implements solutions to problems on periodicity cells, developed at the Scientific and Educational Center for Supercomputer Engineering Modeling and Development of Software Packages of Bauman Moscow State Technical University. An example of calculating the constants of a composite model using the proposed method for a dispersed-reinforced composite based on a metal matrix is considered. Also, the verification of the proposed model for various ways of multiaxial loading of the composite was carried out with direct numerical simulation. It is shown that the proposed microstructural model and the algorithm for determining its constants provide a sufficiently high accuracy in predicting the elastic-plastic deformation of the composite.
Димитриенко Ю.И., Сборщиков С.В., Димитриенко А.Ю., Юрин Ю.В. Микроструктурная модель деформационной теории пластичности квази-изотропных композиционных материалов. Математическое моделирование и численные методы, 2021, № 4, с. 17–44.
doi: 10.18698/2309-3684-2022-1-1541
Within the framework of the deformation theory of plasticity under active loading, a model of constitutive relations for elastic-plastic composites belonging to the class of transversally isotropic materials is proposed. The theory of spectral expansions of stress and strain tensors and the spectral representation of nonlinear tensor functions for transversely isotropic media are used to develop a nonlinear constitutive relations. Specific models of plasticity functions are proposed, depending on the spectral invariants of the strain tensor. To determine the model constants, a method is proposed in which these constants are calculated based on the approximation of deformation curves obtained by direct numerical solution of three-dimensional problems on the periodicity cell of elastic-plastic composites. Problems on the periodicity cell are formulated using the method of asymptotic averaging of periodic media. The numerical solution of problems on the periodicity cell is carried out using the finite element method within the framework of software developed at the Scientific and Educational Center "Supercomputer Engineering Modeling and Development of Software Systems" of Bauman Moscow State Technical University. An example of numerical calculation of the constants of a composite model using the proposed method for a unidirectionally reinforced composite based on carbon fibers and an aluminum alloy matrix is given. Examples of verification of the proposed model for different loading trajectories of the composite in a 6-dimensional stress space are given. It is shown that the proposed microstructural model and the algorithm for determining its constants provide a sufficiently high accuracy in predicting the elastic-plastic deformation of transversely isotropic composites
Димитриенко Ю.И., Сборщиков С.В., Димитриенко А.Ю., Юрин Ю.В. Микроструктурная модель деформационной теории пластичности трансверсально-изотропных композитов. Математическое моделирование и численные методы, 2022, № 1, с. 15–41.
doi: 10.18698/2309-3684-2024-2-1734
The paper is devoted to modeling the deformation of composite materials with finite deformations. The so-called universal models of constitutive relations for composite components are considered, defining several classes of nonlinear relationship between the Piola-Kirchhoff stress tensor and the strain gradient within different energy pairs of stress-strain tensors. The method of asymptotic averaging is applied and local problems are formulated to solve the problem of determining the averaged properties of composites with finite deformations. A variational formulation of the original deformation problem, the so-called local problems on a periodicity cell and the averaged problem for a composite is considered, which makes it possible to use FEM for the numerical solution of these classes of problems. A software module has been developed as part of the SMCM software package, which implements the proposed numerical algorithm. An example of the numerical solution of problems on a periodicity cell for a 3D orthogonally reinforced composite is given, taking into account large deformations of the matrix and fibers, and composite deformation diagrams are calculated for various variants of universal models of constitutive relations.
Димитриенко Ю.И., Каримов С.Б., Димитриенко А.Ю. Моделирование конечных деформаций композиционных материалов на основе универсальных моделей Аn и метода асимптотического осреднения. Математическое моделирование и численные методы, 2024, № 2, с. 17–34.