Александр Юрьевич Димитриенко (МГУ им. М.В. Ломоносова) :


Статьи:

539.36 Микроструктурная модель анизотропной теории течения для упруго-пластических слоистых композитов

Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Черкасова М. С. (МГТУ им.Н.Э.Баумана), Димитриенко А. Ю. (МГУ им. М.В. Ломоносова)


doi: 10.18698/2309-3684-2022-3-4770


Предложена микроструктурная модель слоистых упруго-пластических композитов на основе анизотропной теории течения. Модель представляет собой эффективные определяющие соотношения трансверсально-изотропной теории пластического течения, в которой константы модели определяются не экспериментально, а на основе аппроксимаций диаграмм деформирования композитов, полученных путем прямого численного решения задач на ячейке периодичности для базовых траекторий нагружения, которые возникают в методе асимптотического осреднения. Сформулирована задача идентификации констант этой модели композита, для численного решения этой задачи применяются методы оптимизации функционала ошибки. Представлены результаты численного моделирования предложенным методом для слоистых упруго-пластических композитов, показавшие хорошую точность аппроксимации численных диаграмм деформирования.


Димитриенко Ю.И., Черкасова М.С., Димитриенко А.Ю. Микроструктурная модель анизотропной теории течения для упруго-пластических слоистых композитов. Математическое моделирование и численные методы, 2022, № 3, с. 47–70.



539.36 Микроструктурная модель деформационной теории пластичности квази-изотропных композиционных материалов

Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Сборщиков С. В. (МГТУ им.Н.Э.Баумана), Димитриенко А. Ю. (МГУ им. М.В. Ломоносова), Юрин Ю. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2021-4-1744


Предложена модель определяющих соотношений упруго-пластических композитов, обладающих кубической симметрией свойств. К этому классу относится значительно число композиционных материалов: дисперсно-армированные композиты, у которых имеется упорядоченная, а не хаотическая система армирования, а также некоторые типы пространственно-армированных композитов. Для построения модели нелинейных определяющих соотношений использован тензорно-симметрийный подход, основанный на спектральных разложениях тензоров напряжений и деформаций, а также спектральном представлении нелинейных тензорных соотношений между этими тензорами. Рассмотрена деформационная теория пластичности, для которой использован тензорно-симметрийный подход, а также предложены конкретные модели для функций пластичности, зависящих от спектральных инвариантов тензора деформации. Для определения констант модели предложен метод, в котором эти константы вычисляются на основе аппроксимации кривых деформирования, полученных прямым численным решением трехмерных задач на ячейке периодичности упруго-пластических композитов. Эти задачи возникают в методе асимптотического осреднения периодических сред. Для решения задач на ячейке периодичности использован конечно-элементный метод и специальное программное обеспечение, реализующее решения задач на ячейках периодичности, разработанное в Научно-образовательном центре «Суперкомпьютерное инженерное моделирование и разработка программных комплексов» МГТУ им. Н.Э. Баумана. Рассмотрен пример расчета констант модели композита с помощью предложенного метода для дисперсно-армированного композита на основе металлической матрицы. А также проведена верификация предложенной модели для различных путей многоосного нагружения композита при прямом численном моделировании. Показано, что предложенная микроструктурная модель и алгоритм определения ее констант обеспечивают достаточно высокую точность прогнозирования упруго-пластического деформирования композита.


Димитриенко Ю.И., Сборщиков С.В., Димитриенко А.Ю., Юрин Ю.В. Микроструктурная модель деформационной теории пластичности квази-изотропных композиционных материалов. Математическое моделирование и численные методы, 2021, № 4, с. 17–44.



539.36 Микроструктурная модель деформационной теории пластичности трансверсально-изотропных композитов

Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Сборщиков С. В. (МГТУ им.Н.Э.Баумана), Димитриенко А. Ю. (МГУ им. М.В. Ломоносова), Юрин Ю. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2022-1-1541


В рамках деформационной теории пластичности при активном нагружении предложена модель определяющих соотношений упруго-пластических композитов, относящихся к классу трансверсально-изотропных материалов. Для построения нелинейных определяющих соотношений использована теория спектральных разложениях тензоров напряжений и деформаций, спектральное представление нелинейных тензорных функций для трансверсально-изотропных сред. Предложены конкретные модели функций пластичности, зависящие от спектральных инвариантов тензора деформации. Для определения констант модели предложен метод, в котором эти константы вычисляются на основе аппроксимации кривых деформирования, полученных прямым численным решением трехмерных задач на ячейке периодичности упруго-пластических композитов. Задачи на ячейке периодичности формулируются с помощью метода асимптотического осреднения периодических сред. Численное решение задач на ячейке периодичности осуществляется с помощью конечно-элементного метода в рамках программного обеспечения, разработанного в Научно-образовательном центре «Суперкомпьютерное инженерное моделирование и разработка программных комплексов» МГТУ им. Н.Э. Баумана. приведен пример численного расчета констант модели композита с помощью предложенного метода для однонаправленно-армированного композита на основе углеродных волокон и матрицы из алюминиевого сплава. Приведены примеры верификация предложенной модели для различных траекторий нагружения композита в 6 мерном пространстве напряжений. Показано, что предложенная микроструктурная модель и алгоритм определения ее констант обеспечивают достаточно высокую точность прогнозирования упруго-пластического деформирования трансверсально-изотропных композитов.


Димитриенко Ю.И., Сборщиков С.В., Димитриенко А.Ю., Юрин Ю.В. Микроструктурная модель деформационной теории пластичности трансверсально-изотропных композитов. Математическое моделирование и численные методы, 2022, № 1, с. 15–41.