539.36 Microstructural model anisotropic flow theory for elastic-plastic layered composites

Dimitrienko Y. I. (Bauman Moscow State Technical University), Черкасова М. С. (Bauman Moscow State Technical University), Dimitrienko A. Y. (Lomonosov Moscow State University)

MICROSTRUCTURAL MODEL, LAYERED COMPOSITES, PLASTIC FLOW THEORY, ASYMPTOTIC AVERAGING METHOD, DEFORMATION DIAGRAMS


doi: 10.18698/2309-3684-2022-3-4770


A microstructural model of layered elastic-plastic composites based on the anisotropic flow theory is proposed. The model represents the effective constitutive relations of the transversally isotropic theory of plastic flow, in which the model constants are determined not experimentally, but on the basis of approximations of the deformation curves of composites obtained by direct numerical solution of problems on the periodicity cell for basic loading trajectories, which arise in the method of asymptotic averaging. The problem of identifying the constants of this composite model is formulated; for the numerical solution of this problem, methods of optimizing the error functional are used. The results of numerical simulation by the proposed method for layered elastic-plastic composites are presented, which showed good accuracy of approximation of numerical strain diagrams.


Kvale Joki R., Grytten F., Osnes H. Coupling of plasticity and damage in glass fibre reinforced polymer composites. EPJ Web of Conferences, 2012, vol. 26, art no. 04028. DOI: 10.1051/epjconf/20122604028
Yi G.–S. Anisotropic constitutive model for predictive analysis of composite laminates. Indian Journal of Science and Technology, 2015, vol. 8, pp. 189– 193.
Dvorak G.J. Inelastic deformation of composite materials. Springer-Verlag. 1990, 779 p.
Kovtunov A.I., Mamin S.V., Semistenova T.V. Sloistyye kompozitsionnyye materialy: elektronnoye uchebnoye posobiye. [Layered composite materials: electronic textbook]. Togliatti, TSU Publ., 2017, 75 p.
Adams D.F. Uprugoplasticheskoe povedenie kompozitov. Kompozitsionnye materialy. T. 2: Mekhanika kompozitsionnykh materialov [Elastic-plastic behavior of composites. Composite materials. Vol. 2: Mechanics of composite materials]. Moscow, Mir Publ., 1978, pp. 196–241.
Bilim A.V., Saraev L.A., Sahabiev V.A.The persicularities of two–component composite materials elastic–plastic deformation. Vestnik of Samara University, 1998, no. 4, pp. 113–119.
Vildeman V.E., Sokolkin Yu.V., Tashkinov A.A. Mekhanika neuprugogo deformirovaniya i razrusheniya kompozitsionnykh materialov [Mechanics of inelastic deformation and destruction of composite materials]. Moscow, Nauka Publ., 1997, 288 p.
Nguyen B.N., Bapanapalli S.K., Kunc V., Phelps J.H., Tucker C.L. Prediction of the elastic–plastic stress/strain response for injection–molded long–fiber thermoplastics. Journal of Composite Materials, 2009, vol. 43, no. 3, pp. 217–246.
Katsiropoulos Ch.V., Pantelakis Sp.G., Meyer B.C. Mechanical behavior of non-crimp fabric PEEK/C thermoplastic composites. Theoretical and Applied Fracture Mechanics, 2009, vol. 52, iss. 2, pp. 122–129.
Bensoussan A., Lions J.L., Papanicolaou G. Asymptotic analysis for periodic structures. North-Holland, 1978, 721 p.
Bakhvalov N.S., Panasenko G.P. Osrednenie protsessov v periodicheskikh sredakh. Matematicheskie zadachi mekhaniki kompozitsionnykh materialov [Averaging processes in periodic media. Mathematical problems of the composite material mechanics]. Moscow, Nauka Publ., 1984, 352 p.
Sanches–Palensiya E. Neodnorodnye sredy i teoriya kolebaniy [Nonhomogeneous media and vibration theory]. Moscow, Mir Publ., 1984, 472 p.
Pobedrya B.E. Mekhanika kompozitsionnykh materialov [Mechanics of composite materials]. Moscow, Lomonosov Moscow State University Publ., 1984, 324 p.
Dimitrienko Yu.I., Kashkarov A.I. Finite Element Method of Calculation of Efficient Characteristics of Composites with Periodical Structure. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2002, no. 2, pp. 95–108.
Eglit M.E. An averaged description of processes in periodic elasticoplastic media. Mechanics of Composite Materials,1985, vol. 20, iss. 5, pp.568 –574.
Khdir Y.K., Kanit T., Zaïri F., Naït–Abdelaziz M. Computational homogenization of elastic-plastic composites.International Journal of Solids and Structures, 2013, vol. 50, no. 18, pp. 2829–2835.
Dimitrienko Yu.I., Kashkarov A.I., Makashov A.A. Finite element calculation of effective elastic-plastic characteristics of composites based on the method of asymptotic averaging. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2007, no. 1, pp. 102–116.
Dimitrienko Y.I., Gubareva E.A., Sborschikov S.V., Bazyleva O.A., Lutsenko A.N., Oreshko E.I. Modeling the elastic–plastic characteristics of monocrystalline intermetallic alloys based on microstructural numerical analysis. Маthematical Modeling and Coтputational Methods, 2015, no. 2, pp. 3–22.
Dimitrienko Y.I., Gubareva E.A., Sborschikov S.V. Multiscale modeling of elastic–plastic composites with an allowance for fault probability. Маthematical Modeling and Coтputational Methods, 2016, № 2, pp. 3–23.
Dimitrienko Y.I., Sborschikov S.V, Yurin Y.V. Modeling of effective elastic–plastic properties of composites under cyclic loading. Маthematical Modeling and Coтputational Methods, 2020, № 4, pp. 3–26.
Dimitrienko Yu.I., Sborschikov S.V., Dimitrienko A.Yu., Yurin Yu.V. Modeling microstructural model of the plasticity defor-mation theory for quasiisotropic composite materials. Маthematical Modeling and Coтputational Methods, 2021, no. 4, pp. 17–44.
Dimitrienko Y.I., Gubareva E.A., Cherkasova M.S. Modeling the deformation of layered periodic composites based on the theory of plastic flow. Маthematical Modeling and Coтputational Methods, 2021, no. 2, pp. 15–37.
Dimitrienko Yu.I. Mekhanika sploshnoj sredy. T. 1. Tenzornyj analiz [Continuum Mechanics. Vol. 1. Tensor analysis]. Moscow, BMSTU Publ., 2011, 367 p.
Dimitrienko Yu.I. Mekhanika sploshnoy sredy. Tom 4. Osnovy mekhaniki tverdogo tela [Continuum Mechanics. Vol. 4. Fundamentals of solid mechanics]. Moscow, BMSTU Publ., 2013, 624 p


Димитриенко Ю.И., Черкасова М.С., Димитриенко А.Ю. Микроструктурная модель анизотропной теории течения для упруго-пластических слоистых композитов. Математическое моделирование и численные методы, 2022, № 3, с. 47–70.



Download article

Количество скачиваний: 83