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МГТУ им. Н.Э. Баумана, Москва, 105005, Россия                                                                   
 

Предложена микроструктурная модель слоистых упруго-пластических                            
композитов на основе анизотропной теории течения. Модель представляет собой 
эффективные определяющие соотношения трансверсально-изотропной теории 
пластического течения, в которой константы модели определяются не экспери-
ментально, а на основе аппроксимаций диаграмм деформирования композитов, 
полученных путем прямого численного решения задач на ячейке периодичности для 
базовых траекторий нагружения, которые возникают в методе асимптотическо-
го осреднения. Сформулирована задача идентификации констант этой модели 
композита, для численного решения этой задачи применяются методы оптимиза-
ции функционала ошибки. Представлены результаты численного моделирования 
предложенным методом для слоистых упруго-пластических композитов, пока-
завшие хорошую точность аппроксимации численных диаграмм деформирования. 
 
Ключевые слова: микроструктурная модель, слоистые композиты, теория                        
пластического течения, метод асимптотического осреднения, диаграммы                          
деформирования 
  

Введение. В настоящее время существует достаточно большое 
число работ, посвященных моделированию эффективных механиче-
ских характеристик композиционных материалов на основе                                 
информации о микроструктуре и свойствах, входящих в них                             
компонентов (фаз) [1–9]. Одним из наиболее перспективных таких 
методов является метод гомогенизации (метод асимптотического 
осреднения), предложенный А. Bensoussan, J.D. Lions, G. 
Papanicolaou [10], Н.С. Бахваловым, Г.П. Панасенко [11], Э. Санчес–
Паленсией [12], Б.Е. Победрей [13]. Метод асимптотического                     
осреднения достаточно хорошо развит в настоящее время и успешно 
применяется для разных задач механики, но главным образом для 
линейных задач [14], для решения которых созданы эффективные                 
методы конечно-элементного анализа. В работах [15–19] метод МАО 
применяется для моделирования деформирования упруго-
пластических композитов. 

Для решения задач макроскопического деформирования элемен-

тов конструкций из упруго-пластических композитов на основе                       

метода МАО необходимо решать связанную задачу                                   

микро-макроскопического деформирования, что является достаточно 

трудоемким процессом, даже для современных вычислительных             

систем. В работах [20, 21] был предложен метод решения связанных 
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задач многомасштабного моделирования путем построения микро-

структурных моделей определяющих соотношений, расчета                           

констант, входящих в эти модели на основе аппроксимации числен-

ных диаграмм деформирования, полученных методом МАО, и после-

дующего решения макроскопических задач уже для сред с эффектив-

ными нелинейными, например, упруго-пластическими свойствами. 

Цель настоящей работы — разработка микроструктурной модели 

для слоистых упруго-пластических композитов на основе теории                

течения. Аналогичный метод для деформационной теории пластич-

ности предложен в [21]. 

Эффективные определяющие соотношения слоистых упруго-

пластических слоистых композитов на основе теории течения.  
Рассмотрим слоистый композиционный материал периодической 

структуры, каждый слой которого является упруго-пластическим 

изотропным материалом, соответствующим модели теории пластиче-

ского течения [22] с поверхностью пластичности в форме Губера-

Мизеса с кинематическим упрочнением. Применим к этому компози-

ту метод МАО, тогда, как было показано в работе [22], согласно          

этому методу возникают локальные задачи теории пластичности на 

ячейке периодичности (ЯП), решая которые [22] можно получить 

эффективные упруго-пластические определяющие соотношения      

композита, которые записываются в итерационном виде  

 
{ } { 1} { },m m m

ij ijmn mnC     (1) 

 
{ } { 1} { },p m m m

ij ijkl klY     (2) 

где обозначены: { }m

ij  — средние по ЯП значения компонент тензо-

ров скоростей напряжений, 
{ }p m

ij  — средние значения скоростей 

пластических деформаций композита, m номер итерации, h  —              

индикатор пластического нагружения композита, а также введены: 
{ 1}m

ijspC 
 — эффективный приведенный тензор модулей  упругости  и 

{ 1}m

ijspY 
 — эффективный тензор концентраций пластических деформа-

ций слоистого композита, которые вычисляются по формулам 
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здесь { 1}ˆ m

ijspС   — осреднение по ЯП.  Тензоры 
{ 1}ˆ m

ijspС 
 и 

{ 1}ˆ m

ijspY 
 вычис-

ляются по формулам [22] 
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где 
{ 1}m

ijspC 
 — приведенный тензор модулей упругости компонентов 

композита на 1m   итерации, а в { 1}m

ijspY   — тензор концентрации                    

пластических деформаций компонентов композита на 1m   итера-
ции. Эти тензоры вычисляются с помощью следующих выражений 
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  (5) 

Здесь H  — параметр упрочнения в модели пластического течения, 

0H ,   и n  — константы этой модели,  и 2 pI  — второй инвариант 

тензора (интенсивность), mnij  — компоненты единичного тензора 

четвертого ранга 4 , ijklC  — компоненты тензора модулей упругости 

компонентов композита [23], kl  — компоненты тензора напряжений 

в компонентах композита, 
p

ij  — компоненты тензора пластических 

деформаций  компонента  композита, для которых имеют место соот-
ношения 

 ,p

kl klij ijhQ    (6) 

а h  — индикатор пластического деформирования в компонентах 
композита: 
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0, 0;

1, 0,

f
h

f


 


  (7) 

здесь f  — функция поверхности пластичности компонентов компо-

зита 

   
2

2

2

1
,

2

p

ij ij Sf I H       (8) 

где S  — предел текучести компонентов. 

Для получения значений функций 
{ 1}m

ijspC 
 и { 1}m

ijspY  , { 1}m

ijspY                         

в выражениях (5) компоненты p

ij  и kl  заменяются на { 1}p m

ij

  и { 1}m

kl

  

для соответствующей 1m   итерации. 
   Все соотношения (1)–(8) записаны в декартовой прямоугольной 

системе координат с базисом 
ie , в котором вектор 3e  ортогонален к 

плоскостям раздела слоев композита. Компоненты всех тензоров и 

векторов в (1)–(8) записаны в этом базисе 
ie . 

Микроструктурная модель теории течения для трансвер-
сально-изотропного упруго-пластического композита. Соотноше-
ния (1) с учетом (2)–(8) не допускают явного аналитического                    
представления для поверхности пластичности композита, что затруд-
няет использование этих соотношений при решении сложных                      
макроскопических задач конечно-элементного анализа, поскольку 
приходится анализировать условия перехода в пластическое                          
состояние каждого компонента композита в каждой точке (каждом                   
конечном элементе) конструкции. Потому для дальнейшего                              
используем концепцию построения микроструктурных моделей         
композита, которая была предложена в [21]. 

Воспользуемся тем, что слоистый композит в целом, как                           
однородная гомогенизированная среда, является трансверсально-
изотропной средой, и рассмотрим совместные инварианты 

(3) ( , )pJ   , 
11,..., z  [23, 24] осредненного тензора напряжений   

и пластических деформаций p  композита для группы трансвер-

сальной-изотропии T3 с осью трансверсальной изотропии  3Oc ,                 

где   
ic  — главный базис трансверсальной анизотропии.  Тогда,                      

согласно общей теории ассоциированных моделей анизотропных 
упруго-пластических сред [24], для тензора скоростей пластических 
деформаций композита можно записать следующие определяющие                  
соотношения:  

 
1

(3)

1

,
z

p h J


   


    (9) 
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где 

 
1

(3)

(3)

(3)

,

, ,

k

f

f J
f J

J





 
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 

  


 

 



 



  (10) 

а  

 (3)( ( , )), 1,..., ,pf f J k         (11) 

— пластические потенциалы, определяющие поверхность пластично-

сти композита, которая задается системой уравнений: 

 0, 1,..., ,f k     (12) 

в пространстве макро-напряжений  . В уравнениях (9) обозначен      

h — индикатор пластического нагружения композита, определяемый 

текущим состоянием нагружения по отношению к поверхности               

пластичности (12) и   — коэффициенты пропорциональности. 

Выберем для трансверсально-изотропной среды функциональ-

ный базис совместных инвариантов (3) ( , )pJ    в следующем виде 

[24] 

 
(3) (3)( , ) ( ), 1,..., 4,p pJ I H           (13) 

где 
(3) ( )pI H    — линейные и квадратичные инварианты тензора 

второго ранга в функциональном базисе трансверсальной изотропии [23] 

 

(3) 2 (3) 2

1 3 2 3

(3) 2 2

3 3 3

(3) 2 (3)2 (3)

4 2 3

( ) ( ) , ( ) ,

( ) (( ) ) ( ),

( ) ( ) 2 ( ),

I E c I c

I E c c

I E I I

    

    

   

   

  

   

  (14) 

здесь E  — метрический тензор, 
3

2

3 3cc c , а   — тензорное умно-

жение [23]. 

Параметры упрочнения H  в (13) выбираются в следующем виде 

 
0 (3)( ( )) , 1,..., 4,

npH H I 

       (15) 

где 
0 ,H n   — константы модели. 

Тензоры производных 
(3)J  от совместных инвариантов (14)           

имеют следующий вид [23]: 
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где O  и 4

3O  — направляющие тензоры группы трансверсальной 

изотропии [23] 
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  (17) 

Подставляя выражения (16) в (9), получаем представление                

определяющего соотношения для пластических деформаций слоисто-

го композита в тензорном базисе 
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Если главный базис трансверсальной анизотропии 
ic  совпадает              

с декартовым базисом 
ie , то инварианты (14) можно записать                

с помощью декартовых компонент тензоров 
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 (19) 

а определяющие соотношения (18) в компонентах в этом случае 

можно записать следующим образом: 
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Для слоистого трансверсально-изотропного композита пластиче-

ские свойства можно разделить на две группы: связанные с 1) напря-

жениями межслойных сдвигов и поперечного растяжения-сжатия,                   

2) напряжениям растяжения-сжатия и сдвига в плоскости трансвер-

сальной изотропии. Тогда для слоистого КМ можно ввести два пла-

стических потенциала (11) (т.е. 2k  ) 1f  и 2f , каждый их которых                 

зависит от совместных инвариантов в группе 1) или 2) соответственно 

 
 

 

(3) (3)

1 1 1 1 4 4

(3) (3)

2 2 2 2 3 3

( ), ( ) ,

( ), ( ) .

p p

p p

f f I H I H

f f I H I H

  

  

   

   
  (21) 

Вычисляя производные от f  и подставляя их в (10), получаем 

 
1 1 11 2 2 22

3 2 23 4 1 14

, ,

,

f f

f f

 

 

   

   
  (22) 

Тогда определяющие соотношения (18) для тензора скоростей 

пластической деформации принимают вид 

 
1 1 2 2 ,p

H HhP hP      (23) 

где обозначены тензоры 

 

 

 

2 4

1 11 3 14 3 4

2 23
2 22 3 1 1 2 2 3

( ),

( ).
2

p

H

p

H

P f E c f O H

f
P f c O O O O H

    

      

 

 
  (24) 

 Поскольку эти тензоры ортогональны друг другу, то из (23) по-

лучаем выражения для коэффициентов пропорциональности 

 

1
1

1 1

2
2

2 2

,

.

p

H

H H

p

H

H H

P

P P

P

P P

 
 




 









  (25) 

Если подставить (25) в (23), то для нахождения всех компонент 

тензора пластической деформации к соотношениям (23) следует              

добавить еще два скалярных уравнения (12) с учетом (21) 

 
1 20, 0,f f    (26) 

Выберем пластические потенциалы f  в квадратичном виде,             

подобном модели Мизеса для изотропного случая: 
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2 2
(3) (3) (3) (3)(3)
1 1 1 14

1 2

4 1 1

2 2
(3) (3) (3) (3) (3)
2 2 2 2 3

2 2

2 2 3

2 1,
2 2

2 1.
2 2

s s s

s s s

J J J JJ
f

J J J J J
f

 

 

    
      
   
   

    
      
   
   

  

  

  (27) 

Здесь (3) ( , )pJ    — совместные инварианты (13) в виде (19). 

Функции 
1s

  — это пределы текучести композита при продоль-

ном растяжении и сжатии, соответственно, а 
4s  — предел текучести 

композита при сдвиге в плоскости трансверсальной изотропии,          

2s

  — пределы текучести при поперечном растяжении и сжатии, а 

3s  — предел текучести при межслойном сдвиге. Для анизотропных 

сред различие пределов текучести при растяжении и сжатии обычно 

достаточно существенно, поэтому функции 
s



  и 
s



  могут значи-

тельно отличаться.  

Частные производные f  для потенциалов (27) имеют вид  

 

(3) (3) (3) (3)

14 232 2

4 3

, 1,2,
2 2

1 1
, .

2 2

s s

s s

J J J J
f

f f

 

 
  

 

   



 


 

 

  (28) 

Для упругих деформаций 
e слоистого композита имеем класси-

ческие определяющие соотношения линейно-упругости трансвер-

сально изотропной среды [24] 

Для упругих деформаций e  слоистого композита имеем класси-

ческие определяющие соотношения линейно-упругости трансвер-

сально изотропной среды [24] 

 4 eC     (29) 

где 4C  — эффективный тензор модулей упругости трансверсально-

изотропной среды [24] 

 

4 2 2 2 2

1 2 3 3 3 3 3

4

4 1 1 2 2 5

( )

( ) ,

C l E E l c c l E c c E

l O O O O l

        

     
  (30) 

а 1 5,...,l l  — эффективные упругие константы композита. 
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Задачи макроскопического деформирования элементов кон-

струкций из упруго-пластических композитов.  Макроскопическая 

квазистатическая задача теории пластичности для композита имеет 

вид 

 

0, ,

1
( ), ,

2

, ,
u

T

e e

x V

u u x V

n S u u
 

  

    

  








  (31) 

где 
u     — поверхность гомогенизированной области  V  

композита, в глобальных координатах x  [22],   — часть поверхно-

сти, но которой задан вектор усилий 
eS , 

u  — часть поверхности, на 

которой задан вектор перемещений 
eu . К системе (32) присоединя-

ются определяющие соотношения макро-пластичности (23)–(29)                 

согласно микроструктурной модели трансверсально-изотропного 

упруго-пластического композита или прямые эффективные опреде-

ляющие соотношений слоистого композита (1)–(8). 

Методика идентификации констант микроструктурной                       

модели трансверсально-изотропной упруго-пластической среды. 

Предложенная микроструктурная модель трансверсально-изотропной 

упруго-пластической среды содержит следующие константы 

 0 0 0 0

1 5 1 2 3 4 1 2 3 4 1 2 3 4,..., , , , , , , , , , , , ,s s s sl l H H H H n n n n        (32) 

Эффективные упругие константы слоистого композита 1 5,...,l l  

могут быть вычислены явным образом по упругим константам слоев 

композита, используя для этого аналитические формулы (4) для              

первого приближения 1m  , без учета пластических деформаций. 

Для определения упруго-пластических констант в перечне (33) 

используем cследующую методику: построим диаграммы деформи-

рования слоистого композита, полученные при различных путях 

нагружения в пространстве напряжений ij , на основе прямого                  

решения задачи на ЯП, т.е. с помощью определяющих соотношений 

(1)-(8). Затем построим аналогичные диаграммы с помощью анали-

тических определяющих соотношений композита (23)–(27), и                   

построим процедуру аппроксимации диаграмм первого типа                 

диаграммами деформирования второго типа  ij ij mnF  .  
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Тогда константы (31) найдем из условия наилучшей аппроксима-

ции диаграмм первого типа диаграммами второго типа.  

Рассмотрим далее перечень специального класса задач для опре-

деления констант модели (30) слоистого композита. Для этой цели 

выберем задачи макроскопического деформирования конструкции в 

виде прямоугольного параллелепипеда V , ребра которого ориенти-

рованы по осям 
iOc  — главного базиса трансверсальной анизотропии 

(полагаем для простоты, что i ic e ), и рассмотрим различные случаи 

нагружения  этой конструкции в виде  одноосного растяжения-

сжатия по разным направлениям 
iOe  и сдвигов в различных коорди-

натных плоскостях.   

Одноосное поперечное растяжение-сжатие композита.                            

Рассмотрим случай растяжения-сжатия параллелепипеда V  вдоль 

оси 3Oe . Решение макроскопической задачи (30) с определяющими               

соотношениями (23)–(27) ищем в следующем виде: 

 33 const 0,  а остальные 0.ij      (33) 

Тогда согласно соотношениям  (23)–(27) имеем  

 11 22 330, 0, остальные 0.ij         (34) 

Аналогичные соотношения имеют место для упругих и пласти-

ческих деформаций e

ij  и p

ij . 

Выразим деформацию 33

e  через 
33  с помощью соотношений 

(28)  

 33
33

3

,e

E



   (35) 

где 
3E  — модуль упругости, выражается через модули упругости 

ijklC  композита стандартным образом [24]. 

Найдем теперь зависимость тензора пластических деформаций 

33

p  от компоненты тензора напряжений 
33  из соотношений (26) и 

(27) с учетом одноосности нагружения (28) и (29) 

 33 2 33

2

( )
1.

p

s

H


 


 


  (36) 

Подставляя в это уравнение выражение (15), получаем для                

пластических деформаций следующую формулу  
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2

2

2 33 2

1

1
33 2

33 33 20

2

1

1
33 2

33 20

2

0, если ,

, если ,

, если .

s s

n
p s

s

n
s

s

H

H

 

 


 





  

  

   
 


 
   
 

  

 
  

 
 

  (37) 

Объединяя (36) и (38), получаем диаграмму деформирования 
композита при одноосном поперечном растяжении-сжатии  

 
33 3 33( ).F     (38) 

В этой зависимости присутствуют пять неизвестных констант 

модели: 
3 ,E  0

2 ,H  
2 ,n  

2s

 , 
2s

 . Модуль упругости 
3E  полагаем               

установленным описанным выше способом. Поиск остальных                    
4 констант осуществляем путем сравнения с «экспериментальными» 

диаграммами деформирования ( )

3 33( )эF   , полученными в результате 

прямого решения задачи с определяющими соотношениями (1)–(8) 
при поперечном одноосном растяжении-сжатии слоистого компози-
ционного материала. 

Межслойный сдвиг композита. Рассмотрим случай межслойно-

го сдвига композитного параллелепипеда V  в плоскости 1 3Oe e . В 

этом случае решение макроскопической задачи (30) с определяющи-
ми соотношениями (23)–(30) ищем в следующем виде: 

 13 const 0,  а остальные 0.ij      (39) 

Согласно (23)–(29) отличной от нуля в этом случае будет только 

сдвиговая деформация 13 0 , а остальные 0ij  . Тоже самое             

относится к упругим и пластическим деформациям 
e

ij  и 
p

ij . Из (29), 

(30) и (39), находим  

 13
13

13

.
2

e

G



   (40) 

где 13G  — модуль сдвига композита в плоскости 1 3Oe e . 

Условия пластичности  (26), (27) в данном случае нагружения за-
писываются следующим образом: 

 
2

13 3 13
2 2

3

( )
2 1 0,

p

s

H
f


  

 


  (41) 



Ю.И. Димитриенко, М.С. Черкасова, А.Ю. Димитриенко 

58 

а единственное тождественно ненулевое соотношение в (20) в                    

данном случае имеет вид 

 2
13 13 3 132

3

( ))
4

p p

s

h
H 


  


  (42) 

Выразим компоненту тензора пластических деформаций 
13

p  из 

уравнения (41) с учетом выражения (15) для 
32

0

3 3 13

n
pH H    

 
3

1

2 1
13 3

13 0

3

.
n

p s

H

 
  
 

 
   (43) 

Тогда с учетом (35) получаем диаграмму деформирования КМ 

13 13 13( )F   при межслойном сдвиге: 

 
3

1

2 1
13 13 3

13 0

13 3

.
2

n
s

G H

 
   

 

  
   (44) 

В данной функции содержится четыре неизвестных константы: 

13 ,G  
3 ,n  0

3 ,H  
3s . Их поиск осуществляем путем сравнения с «экспе-

риментальной» диаграммой деформирования ( )

13 13( )эF  , полученной в 

результате прямого решения задачи с определяющими соотношения-

ми (1)–(8) при межслойном сдвиге слоистого композиционного                    

материала. 

Сдвиг в плоскости слоя композита. Рассмотрим случай                      

межслойного сдвига композитного параллелепипеда V  в плоскости 

1 2Oe e . В этом случае решение макроскопической задачи (30) с                

определяющими соотношениями (23)–(30) ищем в следующем виде: 

 12 а остальнconst 0 ые , 0.ij      (45) 

Отличной от нуля в этом случае будет только сдвиговая                          

деформация 12 0 , а остальные 0ij  , аналогично и для упругих и 

пластических деформаций 
e

ij  и 
p

ij . Из (29), (30) и (45) находим  

 12
12

12

.
2

e

G



   (46) 

Условия пластичности (26), (27) в данном случае нагружения                     

записываются следующим образом: 
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2

12 4 12
1 2

4

2( )
2 1 0

p

s

H
f


  

 


  (47) 

а единственное тождественно ненулевое соотношение в (20) в               

данном случае имеет вид 

 1
12 12 4 122

4

2
( )).p p

s

h
H 


  


  (48) 

Выразим компоненту тензора пластических деформаций 
12

p  из 

уравнения (47) с учетом выражения (15) для 
4

4
2

0

4 4 122
n

n pH H    

 
4

4

1

2 1
12 4

12 0

4

.
2

n
p s

n H

 
  
 

 
   (49) 

Тогда с учетом (46) получаем диаграмму деформирования КМ 

12 12 12( )F   при продольном сдвиге 

 
4

4

1

2 1
12 412

12 0

12 4

.
2 2

n
s

nG H

 
   

 

 
   (50) 

Эта функция содержит четыре неизвестных константы: 12 ,G  0

4 ,n  

0

4 ,H  
4s . Их поиск осуществляем путем сравнения с эксперимен-

тальной диаграммой деформирования ( )

12 12( )эF  , полученной в                

результате решения локальных задач МАО, возникающих при сдвиге 

в плоскости слоя композита. 

Одноосное продольное растяжение-сжатие композита.                   

Рассмотрим случай растяжения-сжатия параллелепипеда V  вдоль 

оси 
1Oe . При таком нагружении 0

11 11 const,    а остальные 0ij  . 

Тогда согласно соотношениям (23)–(27) имеем 

 
11 22 33 12 13 230, 0, 0, ост. 0.             (51) 

Аналогичные соотношения имеют место для упругих и пласти-

ческих деформаций 
e

ij  и 
p

ij   

Из соотношений (28) получаем 

 13 1111 12 11
11 22 33

1 1 1

, , ,e e e

E E E
    

   
     (52) 

где 1 12 13, ,E    — эффективные упругие константы композита. 
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В системе (20) для данного случая нагружения имеется три                   

тождественно ненулевых соотношения  

 

11 1 4 11 4 11

22 1 4 4 22

33 2

2 ( ),

2 ,

.

p p

p p

p

h h H

h h H

h

  

 



    

   

 

  (53) 

Функции 1 , согласно (22) и (28) для данного нагружения  имеют 

вид 

1

2

(3) (3) (3) (3)

1 1 1 1 1(3) 0

1 1 1 11 1 11 22

1 1

(3) (3) (3) (3)

2 2 2 2 1(3) 0

2 2 2 2 33

2 2

1
4 2

4

, ( ( ) ),
2 2

, ( ) ,
2 2

,
2

np p

s s

np

s s

s

J J J J
J H

J J J J
J H



 



 

  
     
 
 

  
    
 
 



    
 

  
 






 (54) 

а параметры упрочнения (15) в данном случае выражаются по                 

формулам 

 1 40 0 2 2

1 1 11 22 4 4 11 22( ) , (( ) ( ) ) .
n np p p pH H H H         (55) 

Из третьего уравнения системы (54) и выражения для функции 

2 , зависящей только от 33

p , следует, что 33 0p   для 0t  . Тогда 

условие пластичности в системе (26), (27) для данного вида нагруже-

ния только одно,  и оно имеет вид 

 

2 2
(3) (3) (3) (3)(3)
1 1 1 14

2

4 1 1

1,
2 2s s s

J J J JJ
 

    
     
   
   

  
  (56) 

где  

 (3) 2 2

4 11 4 11 4 22( ) ( ) .p pJ H H       (57) 

Рассмотрим условия нагружения в области растяжения, когда
(3)

1 0J  . Тогда из (48) и (51) имеем систему трех уравнений (53) и 

(56) 

 

11 1 1 22 1 2

2 2 2

11 1 11 22 11 4 11 4 112 2

1 4

, ,

1 1
( ( )) (( ) ( ) ) 1,

p p

p p p p

s s

h U h U

H H H


 

     

   

     
 

  (58) 



Микроструктурная модель анизотропной теории течения… 

61 

для определения функций 
11 22 1, , ,p p    здесь обозначены 

 

1

1

10

1 11 1 11 22 11 4 112 2

1 4

10

2 11 1 11 22 4 112 2

1 4

1 1
( ( ) ) ( ),

1 1
( ( ) ) .

np p p

s s

np p p

s s

U H H

U H H









    

   

    
 

   
 

  (59) 

Поделим второе уравнение системы (58) на первое, а третье 

уравнение в (58) продифференцируем по t . Тогда, после приведения 

подобных, получим систему двух дифференциальных уравнений    

относительно 
11 22,p p   

 22 1 11 11 2 11, ,p p pФ Ф       (60) 

где обозначены функции 

 

1

4

32
1 2

1 4

3 11 1 11 222 2

1 4

4 11 1 11 22 1 11 22 1 12

1

11 4 11 4 11 42

4

10

1 1 1 11 22 1

0 2 2

4 4 4 11 22

, ,

1 1
( ( )),

1
( ( ))( ( ) (1 ))

1
( 2 )( )),

( ) (1 ),

2 ( )

p p

s s

p p p p

s

p p

s

np p

np p

UU
Ф Ф

U U

U H

U H H H Ф

H H H

H H n Ф

H H n







 

 
    
 

      

  

  

 

  
 

    


  


 

  1

11 22 1( ).p pФ
 

  (61) 

Аналогичные соотношения имеют место для случая продольного 

одноосного сжатия вдоль оси 
1Oe , когда (3)

1 0J  , в этом случае в фор-

мулах (61) следует заменить 2

1s

  на 2

1s

 . После численного               

решения системы (60) с учетом соотношений (52) находим диаграммы 

деформирования 11 11 11( )F    композита при одноосном продольном 

растяжении-сжатии. В данных зависимостях присутствуют десять 

констант модели композита: 0 0 0 0

1 12 13 1 4 1 4, , , , , , ,E H H n n  1 1 4, , .s s s

     

Упругие константы полагаем предварительно вычисленными                 

указанным выше способом, также полагаем, что предварительно 

определены константы 0 0

4 4 4, , sH n   из «экспериментов» на сдвиг в 

плоскости слоя. Поиск оставшихся констант  0 0

1 1 1 1, , , ,s sH n                 

осуществляем путем сравнения экспериментальных диаграмм                
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деформирования ( )

11 11 11( )эF   , полученных в результате решения 

локальных задач МАО, возникающих при продольном одноосном 

растяжении (сжатии) слоистого композита, с диаграммами деформи-

рования 
11 11 11( )F   . 

Алгоритм численного решения задачи поиска параметров 

модели. Для каждого из 4-х рассмотренных случаев нагружения 

Задачу нахождения неизвестных констант (33) микроструктурной 

модели сформулируем как задачу минимизации некоторой метрики 

 ( ), эR   , которая характеризует ошибку — отклонение теоретиче-

ских диаграмм деформирования ( )ij ij klF   при всех видах нагру-

жения для конкретного набора упругих констант от соответствую-

щих «экспериментальных» диаграмм деформирования 
( ) ( )э

ij ij klF  , 

полученных с помощью асимптотически точных  определяющих          

соотношений (1)–(8) слоистого КМ при тех же самых четырех видах 

нагружения: 

  
0 0

1 5 1 4
0

1 4 1 2 3 4

( )

,..., , ,..., ,

, ..., , , , ,

, min.

s s s s

э

l l H H

n n

R

 



   

    (62) 

Используем метрику для вычисления ошибки: 

  
0,5

( )

( )
1 ,

( ( ))1
, 1 ,

( ( ))

N
iэ

э
i i

t
R

N t

 
  
 
 


 

   

 
 

 
  (63) 

с помощью которой можно минимизировать среднеквадратичное          

отклонение экспериментальной и теоретической кривых в N  точках, 

здесь ( )it  — деформации в моменты времени 1t , 1,...,i N . Для 

решения задач минимизации (63) использовался метод Хука-Дживса. 

Пример решения задач идентификации констант микро-

структурной модели слоистого упруго-пластического композита. 

В качестве примера был рассмотрен слоистый КМ, ЯП которого            

состояла из двух слоев с относительными толщинами 0,5sh   и 

1A Sh h  . Слои полагались изотропными, характеристики одного из 

слоев ЯП соответствовали типичному алюминиевому сплаву, а               

другого слоя – высокопрочной стали (условное наименование этого 

композита Al/S). Компоненты тензора модулей упругости слоев ijklC  

в соотношениях (5) имели стандартный вид [24] для изотропных сред 

  2 ;ijkl ij kl ik jl il jkC            (64) 
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    

, ,
1 1 2 2 1

E E
 

  


 

  
  (65) 

где ,   — константы Ламе, E  — модуль Юнга, v  — коэффициент 

Пуассона [24].  Константы, характеризующие пластические свойства 

слоев,  согласно модели (1)–(8), приведены в табл. 1. 

Таблица 1 

Константы, в упруго-пластической модели (1)–(8) слоев композита Al/S 

Материал E, ГПа v   
0H , ГПа    n   

S , ГПа 

Сталь 200 0,31 100 0,7 0,9 0,6400 

Алюминий 70 0,3 40 0,5 0,7 0,0625 

 

С помощью разработанного метода были рассчитаны и построе-

ны осредненные диаграммы деформирования  ij ij mnF   слоистого 

композита при одноосных нагружениях в разных направлениях для 

растяжения и сжатия. Также при помощи задачи минимизации         

функционала (62) были найдены константы (33). 

Экспериментальные ( )

33 33 33( )эF    и расчётные 
33 33 33( )F    

диаграммы деформирования при одноосном нагружении в попереч-

ном направлении 3Oe  представлены на рис. 1, значения для                     

вычисленных оптимальных констант 0 0

3 2 2 2 2, , , ,s sE H n     приведе-

ны в табл. 2. 

На рис. 2 приведены диаграммы деформирования ( )

13 13 13( )эF   

и расчётные 13 13 13( )F   при межслойном сдвиге, значения для их 

констант 0 0

13 3 3 3, , , sG n H   приведены в табл. 3. 

На рис. 3 приведены диаграммы деформирования ( )

12 12 12( )эF   

и расчётные 
12 12 12( )F   диаграммы деформирования при сдвиге в 

плоскости слоя  12 12   а значения вычисленных констант модели 

0 0

12 4 4 4, , , sG n H   — в табл. 4. 

На рис. 4 приведены экспериментальные ( )

11 11 11( )эF    и              

расчётные 11 11 11( )F    диаграммы деформирования  композита при 

продольном растяжении — сжатии,  а значения оптимальных констант 
0 0 0 0

1 1 2 1 2 1 1 2 2 4, , , , , , , , ,s s s s sE H H n n          — приведены в табл. 5. 

Максимальная относительная погрешность для полученных диа-

грамм составляет 11% , что говорит об удовлетворительном качестве 

модели эффективной трансверсально-изотропной упруго-пластической 

среды. 
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Рис. 1. Диаграммы деформирования 
33 33   композита при одноосном 

нагружении в поперечном направлении: 

1 — экспериментальные; 2 — расчетные, 

а — растяжение; б — сжатие 
 

 

 

 
 

Рис. 2. Диаграммы деформирования 
13 13   композита при сдвиге                      

в плоскости слоя: 

1 — экспериментальные; 2 — расчетные 
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Таблица 2 

Значения констант микроструктурной модели для композита Al/S при 

одноосном растяжении- сжатии в поперечном направлении 

Константы E, ГПа 
0

2H , ГПа 0

2n  
2s

 , ГПа 
2s

 , ГПа 

Значения 75 0,65 0,71 0,12 0,15 

Таблица 3 

Значения констант микроструктурной модели для композита Al/S  

при межслойном сдвиге 

Константы 13G , ГПа 0

3H , ГПа 0

3n  3s , ГПа 

Значения 20 0,60 0,67 0,09 

 
 

 

 
 

Рис. 3. Диаграммы деформирования 
12 12   композита при сдвиге                      

в плоскости слоя: 

1 — экспериментальные; 2 — расчетные 

 

Таблица 4 

Значения констант микроструктурной модели для композита Al/S при 

сдвиге в плоскости слоя 

Константы 12G , ГПа 0

4H , ГПа 0

4n  4s , ГПа 

Значения 25 0,62 0,55 0,25 

Таблица 5 

Значения констант микроструктурной модели для композита Al/S при 

одноосном растяжении и сжатии в продольном направлении 

Константы E, ГПа 
0

1H , ГПа 0

1n  1s

 , ГПа 1s

 , ГПа 

Значения 130 0,63 0,2 0,2 0,18 
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Рис. 4. Диаграммы деформирования 
11 11   композита при одноосном 

нагружении в поперечном направлении: 
1 — экспериментальные; 2 — расчетные, 

а — растяжение; б — сжатие 

 

Выводы. Предложена микроструктурная модель трансверсаль-
но-изотропной теории течения для упруго-пластических слоистых 
композитов. Константы этой модели вычисляются на основе сравне-
ния базовых диаграмм деформирования, полученных на основе                 
модели и на основе метода асимптотического осреднения (с помо-
щью численного эксперимента). 

Предложен метод идентификации констант микроструктурной 
модели трансверсально-изотропного упруго-пластического слоистого  
композита, путем решения задачи минимизации функционала                    
среднеквадратического отклонения экспериментальных диаграмм 
деформирования, полученных с помощью численного решения задач 
на ЯП, и теоретических диаграмм деформирования, полученных              
путем аппроксимации.  

Приведен пример решения задачи идентификации констант           
модели двухслойного упруго-пластического слоистого композита, 
который показал эффективность предложенного метода. 
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A microstructural model of layered elastic-plastic composites based on the anisotropic flow 
theory is proposed. The model represents the effective constitutive relations of the transver-
sally isotropic theory of plastic flow, in which the model constants are determined not               
experimentally, but on the basis of approximations of the deformation curves of composites 
obtained by direct numerical solution of problems on the periodicity cell for basic loading 
trajectories, which arise in the method of asymptotic averaging. The problem of identifying 
the constants of this composite model is formulated; for the numerical solution of this            
problem, methods of optimizing the error functional are used. The results of numerical      
simulation by the proposed method for layered elastic-plastic composites are presented, 
which showed good accuracy of approximation of numerical strain diagrams. 
 
 

Keywords: microstructural model, layered composites, plastic flow theory, asymptotic 
averaging method, deformation diagrams 
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