doi: 10.18698/2309-3684-2024-2-1734
The paper is devoted to modeling the deformation of composite materials with finite deformations. The so-called universal models of constitutive relations for composite components are considered, defining several classes of nonlinear relationship between the Piola-Kirchhoff stress tensor and the strain gradient within different energy pairs of stress-strain tensors. The method of asymptotic averaging is applied and local problems are formulated to solve the problem of determining the averaged properties of composites with finite deformations. A variational formulation of the original deformation problem, the so-called local problems on a periodicity cell and the averaged problem for a composite is considered, which makes it possible to use FEM for the numerical solution of these classes of problems. A software module has been developed as part of the SMCM software package, which implements the proposed numerical algorithm. An example of the numerical solution of problems on a periodicity cell for a 3D orthogonally reinforced composite is given, taking into account large deformations of the matrix and fibers, and composite deformation diagrams are calculated for various variants of universal models of constitutive relations.
[1] Kwietniewskia M., Miedzińska D. Review of elastomeric materials for application to composites reinforced by auxetics fabrics. Procedia Structural Integrity, 2019, vol. 17, pp. 154-161.
[2] Peel L.D., Mejia J., Narvaez B., Thompson K., Lingala M. Development of a simple morphing wing using elastomeric composites as skins and actuators. Journal of Mechanical Design, 2009, vol. 131, no. 9, pp. 839-847.
[3] Christensen R.M. Mechanics of composite materials. New York, John Wiley & Sons, 1979, 324 p.
[4] Malmeister A.K., Tamuzh V.P., Teters G.A. Soprotivlenie polimernyh i kompozitnyh materialov [Resistance of polymer and composite materials]. Riga, Zinatne Publ., 1980, 572 p.
[5] Jones R.M. Mechanics of Composite Materials. USA, Taylor&Francis Publ., 1999, 520 p.
[6] Vasiliev V.V., Tarnopolsky Yu.M. Kompozicionnye materialy: spravochnik [Composite materials: handbook]. Moscow, Mashinostroenie Publ., 1989, 510 p.
[7] Vanin G.A. Mikromekhanika kompozicionnyh materialov [Micromechanics of composite materials]. Kiev, Naukova dumka Publ., 1985, 300 p.
[8] Bakhvalov N.S., Panasenko G.P. Osrednenie protsessov v periodicheskikh sredakh. Matematicheskie zadachi mekhaniki kompozitsionnykh materialov [Averaging processes in periodic media. Mathematical problems of the composite material mechanics]. Moscow, Nauka Publ., 1984, 356 p.
[9] Bensoussan A., Lions J.L., Papanicolaou G. Asymptotic analysis for periodic structures. North-Holland, 1978, 721 p.
[10] Pobedrya B.E. Mekhanika kompozitsionnykh materialov [Mechanics of composite materials]. Moscow, Lomonosov Moscow State University Publ., 1984, 336 p.
[11] Sanchez-Palencia E. Non-Homogeneous Media and Vibration Theory. New York, Springer Publ., 1980.
[12] Dimitrienko Yu.I., Kashkarov A.I. Finite element method for calculating the effective characteristics of spatially reinforced composites. Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki — Herald of Bauman Moscow State Technical University. Series Natural Sciences, 2002, no. 2, pp. 95–108.
[13] Dimitrienko Yu.I. Modelling of nonlinear-elastic properties of composites with finite deformations by asymptotic homogenization method. Izvestiya vyshikh uchebnykh zavedeny. Mashinostroenie — Proceedings of Higher Educational Institutions. Machine Building, 2015, no. 11, pp. 68–77. DOI 10.18698/0536-1044-2015-11-68-77
[14] Dimitrienko Yu.I, Gubareva E.A., Kolzhanova D.Yu., Karimov S.B. Modelirovanie neszhimaemyh sloistyh kompozitov s konechnymi deformaciyami na osnove metoda asimptoticheskogo osredneniya [Modeling of incompressible layered composites with finite deformations based on the asymptotic averaging method]. Matematicheskoe modelirovanie i chislennye metody [Mathematical Modeling and Computational Methods], 2017, no. 1, pp. 32–54. DOI: 10.18698/2309-3684-2017-1-3254
[15] Dimitrienko Y.I., Gubareva E.A., Karimov S.B., Kolzhanova D.Y. Modeling the effective characteristics of transversely isotropic incompressible composites with finite strains. Маthematical Modeling and Coтputational Methods, 2017, no. 4, pp. 72–92.
[16] Dimitrienko Y.I., Karimov S.B., Kolzhanova D.Y. Modeling of the effective universal constitutive relations for elastic laminated composites with finite strains. IOP Conference Series: Material Science and Engineering, 2019, vol. 683, art no. 012006. DOI: 10.1088/1757-899X/683/1/012006
[17] Dimitrienko Y.I., Gubareva E.A., Karimov S.B., Kolzhanova D.Y. Universal models of the constitutive relations for transversely isotropic compressible composites with finite strains. IOP Conference Series: Material Science and Engineering, 2020, vol. 934, art no. 012012. DOI: 10.1088/1757-899X/934/1/012012
[18] Abodi J., Arnold S.M. Micromechanical modeling of the finite deformation of thermoelastic multiphase composites. Mathematics and Mechanics of Solids, 2000, vol. 5, no. 1, pp. 75-99.
[19] Costa S., Fagerström M., Olsson R. Development and validation of a finite deformation fibre kinking model for crushing of composites. Composites Science and Technology, 2020, vol. 197, art. 108236.
[20] Qingsheng Yang, Fang Xu. Numerical modeling of nonlinear deformation of polymer composites based on hyperelastic constitutive law. Frontiers of Mechanical Engineering in China, 2009, vol. 4, pp. 284–288.
[21] Aboudi J. Finite strain micromechanical modeling of multiphase composites. Int. J. Multiscale Comput, 2008, vol. 6 (2008), pp. 411–434.
[22] Bin Zhang, Xiaoming Yu, Boqin Gu. Micromechanical modeling of large deformation in sepiolite reinforced rubber sealing composites under transverse tension. Polym Compos, 2015. DOI: 10.1002/pc.23596
[23] Qi Ge, Xiaofan Luo, Christian B. Iversen, Hossein Birjandi Nejad, Patrick T. Mather, Martin L. Dunn, H. Jerry Qi. A finite deformation thermomechanical constitutive model for triple shape polymeric composites based on dual thermal transitions. International Journal of Solids and Structures, 2014, vol. 51, pp. 2777–2790.
[24] Dimitrienko Yu.I. Mekhanika sploshnoy sredy. V 4 tomakh. T. 2. Universalnye zakony mekhaniki i elektrodinamiki sploshnykh sred [Continuum Mechanics. In 4 vols. Vol. 2. Universal lows of continuum mechanics and electrodynamics]. Moscow. BMSTU Publ., 2011, 560 p.
[25] Dimitrienko Yu.I. Mekhanika sploshnoy sredy. V 4 tomakh. Tom 4. Osnovy mekaniki tverdykh sred [Continuum mechanics. In 4 vols. Vol. 4. Fundamentals of mechanics of solid mechanics]. Moscow, BMSTU Publ., 2013, 624 p.
[26] Dimitrienko Yu.I. Mekhanika sploshnoj sredy. T. 1. Tenzornyj analiz [Continuum mechanics. In 4 vols. Vol. 1. Tensor analysis]. Moscow, BMSTU Publ., 2011, 367 p.
[27] Oden J. Konechnye elementy v nelinejnoj mekhanike sploshnyh sred [Finite elements in nonlinear continuum mechanics]. Moscow, Mir Publ., 1976, 464 p.
[28] Certificate no. 2018614767 Programma MultiScale_SMCM dlya mnogomasshtabnogo modelirovaniya napryazhenno-deformirovannogo sostoyaniya konstrukcij iz kompozicionnyh materialov, na osnove metoda mnogourovnevoj asimptoticheskoj gomogenizacii i konechno-elementnogo resheniya trekhmernyh zadach teorii uprugosti [MultiScale_SMCM program for multiscale modeling of the stress-strain state of structures made of composite materials, based on the method of multilevel asymptotic homogenization and finite element solution of three-dimensional problems of elasticity theory]: certificate of ofic. registration of computer programs/ Yu.I. Dimitrienko, S.V. Sborshchikov, Yu.V. Yurin; applicant and copyright holder: BMSTU — no. 2018677684; application 21.02.2018; registered in the register of computer programs 17.04.2018 — [1].
Димитриенко Ю.И., Каримов С.Б., Димитриенко А.Ю. Моделирование конечных деформаций композиционных материалов на основе универсальных моделей Аn и метода асимптотического осреднения. Математическое моделирование и численные методы, 2024, № 2, с. 17–34.
Количество скачиваний: 47