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Моделирование конечных деформаций композицион-

ных материалов на основе универсальных моделей Аn и 

метода асимптотического осреднения  
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Статья посвящена моделированию деформирования композиционных материалов с 

конечными деформациями. Рассмотрены так называемые универсальные модели 

определяющих соотношений для компонентов композита, задающих сразу несколько 

классов нелинейной связи между тензором напряжений Пиолы—Кирхгофа и гради-

ентом деформаций в рамках разных энергетических пар тензоров напряжений-

деформаций. Применен метод асимптотического осреднения и сформулированы 

локальные задачи для решения задачи об определении осредненных свойств компо-

зитов с конечными деформациями. Рассмотрена вариационная постановка исходной 

задачи деформирования, так называемых локальных задач на ячейке периодичности 

и осредненной задачи для композита, позволившая применить МКЭ для численного 

решения указанных классов задач. Разработан программный модуль в составе про-

граммного комплекса Manipula/SMCM, который реализует  предложенный числен-

ный алгоритм. Приведен пример численного решения задач на ячейке периодичности 

для 3D ортогонально-армированного композита с учетом больших деформаций 

матрицы и волокон, а также  рассчитаны диаграммы деформирования композита 

для различных вариантов универсальных моделей определяющих соотношений. 

 

Ключевые слова: композиты, конечные деформации, метод асимптотического 

осреднения, универсальные модели An, ячейка периодичности, метод конечных эле-

ментов 

  

Введение. В разных отраслях промышленности широко  приме-

няют композиционные материалы, состоящие из резиноподобных 

или эластомерных матриц, армированных волокнами, дисперсными 

частицами или тканевыми наполнителями [1,2]. Такие материалы 

представляют значительный интерес, так как обладают удачными со-

четаниями свойств, в частности относительно высокой прочностью в 

направлениях укладки армирующего наполнителя, достаточно боль-

шой предельной деформацией разрушения, обусловленной способно-

стью резин деформироваться без разрушения в области больших де-

формаций. 

 В настоящее время для прогнозирования свойств композитов 

применяются различные методы [3-7]. Наиболее перспективным яв-

ляется метод асимптотического осреднения, который был предложен 

Н.С Бахваловым и Г.П. Панасенко [8], Bensoussan A., Lions JL., 

Papanicalaou [9], Б.Е. Победрей [10], Э. Санчес-Паленсией [11]. Ме-

тод асимптотического осреднения достаточно хорошо развит в 
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настоящее время и успешно численно реализован для различных за-

дач механики, но, главным образом, для линейных задач [12]. В рабо-

тах под руководством проф. Ю.И. Димитриенко этот метод был при-

менен для расчета нелинейно-упругих свойств слоистых композитов 

с конечными деформациями [14-17]. Другие подходы для моделиро-

вания микромеханики композитов с конечными деформациями мож-

но найти в работах [18-23].  

В данной работе предложен метод расчета диаграмм деформиро-

вания пространственно армированных композитов с конечными де-

формациями на основе асимптотической теории осреднения нели-

нейно-упругих композитов с периодической структурой, которая 

обобщена для случая конечных деформаций. Для расчета определя-

ющих соотношений нелинейно-упругих сред для случая конечных 

деформаций в данной работе использованы универсальные представ-

ления моделей нелинейно-упругих сред с конечными деформациями 

[24]. 

Постановка задачи механики для упругих композитов с ко-

нечными деформациями в рамках моделей n . Для композицион-

ного материала, состоящего из различных компонент, рассматривает-

ся задача нелинейной теории упругости с конечными деформациями  

в лагранжевом описании в общей формулировке с использованием 

универсальных моделей упругих сред ― моделей n , предложенных 

Ю. И. Димитриенко [25]: 

 0, ,iX V   P f  (1) 

  
( )

, , ,
n

i iX X V  P F  (2) 

 , ,T iX V   F E u  (3) 

 [ ] 0, [ ] 0, ,iX    n P u  (4) 

 1 2( ) ( ), , , .i i
e n eX X    n P t u u  (5) 

Здесь (1) ― уравнения равновесия, (2) ― определяющие соот-

ношения нелинейно-упругой среды с использованием моделей n , 

(3) ― кинематическое соотношение, (4)― условия идеального кон-

такта на поверхностях раздела   -ой и  -ой компонент компози-

та, (5) ― граничные условия на частях 1  и 2  внешней поверхно-

стях композита, которые вместе составляют всю внешнюю поверх-
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ность: 
1 2    . Используется обозначение [ ]  для скачка вели-

чины   при переходе через границу   раздела компонентов   и 

 . Также введены следующие обозначения: 


  ― плотность в от-

счетной конфигурации; 
(n)

 ― тензор определяющих соотношений 
нелинейно-упругих компонент композита; P  ― тензор напряжений 
Пиолы-Кирхгофа; F  ― тензор градиент деформации; u  ― вектор 

перемещений; 


n  ― вектор нормали к поверхности в отсчетной кон-

фигурации ; ( )e n



t  ― вектор поверхностных усилий, приложенных 

к поверхности 
1 , ( ) ( )( )e n e t S F t , где 

( )et  ― вектор напряжений в 

актуальной конфигурации,  S F  ― тензор преобразования усилий из 

актуальной конфигурации в отсчетную;  e
u  ― вектор заданных пе-

ремещений поверхности 
2 , f  ― вектор плотности массовых сил; 



  ― набла оператор в отсчетной конфигурации;   ― знак тензор-
ного произведения;   ― знак скалярного произведения. 

Тензор определяющих соотношений 
(n)

 нелинейно-упругих ком-

понент композита для универсальных моделей n  упругих сред с 

конечными деформациями имеет сложный неявно-заданный вид и 

зависит от градиента деформаций F  и лагранжевых координат (раз-

рывным образом) iX : 

 

 

(n)(n)
4

(n) 3
4 0

, 1

(n)

( )

(n)

3
2

1

( , ) ,

,

( , ),

1
,

, .

i

i

n

n III

T

X

E

X

n III

   

 



  



  

   


 



 


   





C

C

F Ε ψ

Ε p p p p

ψ C

C

C U E

U F F F p p

 (6) 

Здесь обозначен  

 
(n) (n) (n)

1 3( , ) ( ( ),..., ( ), )i iX I I X  C C C  (7) 
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– упругий потенциал (различный для каждого компонента композита 

и поэтому зависящий явно от iX ); 
( )n

C  ― симметричный энергетиче-
ский тензор деформации [24], n – номер энергетической пары тензо-

ров напряжений-деформаций; 
(n) (n)

1 3( ),..., ( )I IC C  ― главные инварианты 

тензора 
( )n

C , 
(n)

4
Ε  ― тензор энергетической эквивалентности [24], свя-

зывающий энергетический тензор напряжений 
( )n

T  и тензор Пиолы-

Кирхгофа P ; , 
p p  ― векторы собственного базиса для правого U  и 

левого V  тензора искажений, соответственно (являются неявными 

функциями только от F ); 
  ― собственные значения тензоров U  и 

V ,  которые являются функциями от тензора градиента деформаций 

F ,  0

1 2 3, ,E     ― функции от собственных значений 
  [24]. 

 Решение задачи (1) – (6) ищется относительно поля вектора пе-

ремещений  iXu u , после нахождения которого координаты про-

извольной точки композита вычисляются по формуле: 

     i i iX X X


 x x u . 

Асимптотические разложения для решения задачи механики 

композитов с конечными деформациями. Для КМ, имеющего пе-

риодическую структуру, решение задачи (1)-(6) ищем в виде асимп-

тотического разложения [13,14] по малому параметру / 1l Læ , 

представляющему собой отношение размера l ячейки периодичности 

(ЯП) к характерному размеру конструкции L: 

    ( )

0

, ( )
N

i n n i j n

n

X X o


  u u , (8) 

 , .i jX V V    

Перемещение (9) представляет собой функцию от безразмерных 

глобальных лагранжевых координат iX , меняющихся в гомогенизи-

рованной области V  КМ, и от локальных координат 
j jX 

/j jX  , заданных на ячейке периодичности V , и относительно 

которых функция является периодической.  

Локальные задачи на ЯП. С использованием разложения (9), а 

также аналогичных разложений остальных неизвестных полей, на 

ячейке периодичности может быть получена рекуррентная последо-

вательность локальных задач n , 0,1, ,n N . Подробное изложе-

ние этой методики представлено в работе [16]. 
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Решение каждой задачи n  в этой последовательности использу-

ется как входные данные для следующей задачи.  

Задача нулевого приближения 0  имеет вид: 

 
 0

0, j V    
ξ

P , 

  
(n) T

(0) (0) (0) (1)( , ),j     
ξ

P F F F u , (9) 

 (0) (1)[ ] 0, [ ] 0,  j
    n P u , 

 
(1) (1)0, 0, 1,2,3

l
l  u u . 

Здесь ξ
 ― набла-оператор по локальным координатам, а также 

введены обозначения: для осреднения по ЯП  

 

1/2 1/2 1/2

1 2 3

1/2 1/2 1/2

1

V

dV d d d
V





  

            (10) 

и для условия периодичности функций 

 
1/2 1/2

.i ii    
    (11) 

Неизвестным в задаче 0  является поле перемещений 
 1

u , а 

входными данными является поле осредненного тензора градиента 
деформаций 

 (0)  
X

F E u , (12) 

где х  ― набла-оператор по глобальным координатам. 

Локальная задача 1  для модели n  имеет вид: 

 
(0) (1) 0     

X ξ
P P f , 

j V  , 

 
(0)

(1) (1)T( , ) ,
(n)

j




  
 F F

P F F
F

 (13) 

  
T

(1) (1) (2)    X ξF u u , 

 (1) (2)[ ] 0, [ ] 0,    n P u ξ , 

 
(2) (2)0, 0, 1,2,3

l
l  u u . 

Неизвестной в этой задаче является вектор перемещений 
 2

u . 
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Осредненная задача. Входные данные для локальной задачи ну-

левого приближения 0  ― градиент деформации F , в свою очередь 

определяются из решения  осредненной задачи на ЯП. 

 0     
X

P f , ,iX V  

  
(n)

,P F  (14) 

 (0) T( )   
X

F E u , 

 
(0)

1 2( ) ( ), , ,i i
e n eX X    n P t u u , 

где 
 0

P P  ― осредненный тензор напряжений  

Пиолы-Кирхгофа, а 

  
(n) (n)

(0)( , )j  F F  (15) 

― эффективный тензор определяющих соотношений композита. 

Вариационная постановка задач механики. Для произвольно-

го объема V  может быть записана вариационная постановка  задачи 

(1)-(6) с использованием виртуальных скоростей v , в следующем 

виде: 

 ( , ) 0W  u v , (16) 

где введена вариация мощности сил, действующих на тело V  

 int( , ) ( , ) ( )extW W W       u v u v v , (17) 

здесь int ( , )W u v  ― вариация мощности внутренних сил, а ( )extW v  

― вариация мощности внешних сил 

 

1

int

( )

( , ) ( , ) ,

( ) .

i T

V

e next

V

W X dV

W dV d



    

       



 

u v P u v

v f v t v

 (18) 

В формуле (17) использовано обозначение для функции опреде-

ляющих соотношений 

  
( ) ( )

( , ) , ,
n n

i i T iX X X
 

   
 

P u F E u , (19) 

которая зависит от вектора перемещений  
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Вариационная постановка (17)-(20) может быть применена и для 

локальных задач n  (10) и (14), а также для осредненной задачи (15), 

с той лишь разницей, что в этих задачах меняются и определяющие 

соотношения, массовые силы f  и внешние поверхностные силы 

( )e nt . Условия осреднения и периодичности в локальных задачах (10) 

и (14) учитываются как дополнительные ограничения на поля кине-
матически допустимых перемещений u , эти условия явно не входят в 

вид функционала (17).  

Алгоритм линеаризации задачи.  Линеаризуем  уравнение  (17) 

с использованием процедуры взятия функциональной производной 

по направлению [26] от функционала мощности (18) 

 ( , ) 0D W  u v , (20) 

где ( , )D W u v  ― функциональная производная от виртуальной 

мощности, которая вычисляется следующим образом 

 int( , ) ( , ) ( , );extW W W       u v u v u v  (21) 

здесь 

 

 

0

4

int

( )
4

( , ) ( ) ( ) ;

( , ) , .

V

n
i i

W dV

X X

       

 
 
 

u v v A u

A P u F
F F

 (22) 

Выражение для int ( , )W u v  имеет  следующий вид: 

 
0

ext ( , )t T

n

V

W dV d


 
           

 
 u v f v v S E u t . (23) 

Запишем вариационное уравнение (21) с учетом (22)-(24) в ком-

понентно-матричном виде в единой декартовой системе координат 

kOe , тогда получим 

     , 0D W u v    (24) 

где 

 int({ },{ }) ({ },{ }) ({ },{ });extW u v W u v W u v         (25) 

 
0

int ({ },{ }) ([ ]{ })[ ][ ]{ } ;

V

W u v L v A L u dV      

 
0

ext ({ },{ }) { }[ ]{ } { }[ ]{ }t

n

V

W u v v R f dV v S t d


        . 
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Здесь  1 2 3{ } , ,
T

u u u u ,  1 2 3{ } , ,
T

      ― координатные столб-

цы компонент векторов перемещений и скоростей, [ ]L  ― матрица 

операторов дифференцирования, связывающая компоненты градиен-

та u  с компонентами вектора u , [ ]A  ― матрица компонент тен-

зора 
4
A , [ ]S  ― матрица компонент тензора S , { }nt  ― координат-

ный столбец компонент вектора nt , [R] [ Е]   ― диагональная мат-

рица плотностей, [Е]  ― единичная матрица. 

Применение метода конечных элементов. Дискретизируем об-

ласть 
 0

V , представив ее в виде суммы конечных элементов (КЭ) 
 e

V : 
   0 e

e

V V  [27], тем самым вводится конечно-элементная мо-

дель (КЭМ) области. 

Поля перемещений и виртуальных скоростей аппроксимируются 

в каждом КЭ 
 e

V  независимо, с помощью следующих представле-

ний: 

 { } [ ]{ }, { } [ ]{ }u Ф q v Ф y     (26) 

где { }q  и { }y  ― столбцы координат вектора перемещения и вирту-

альной скорости в узлах КЭ 
( )eV , а [ ]Ф  ― матрица функций формы. 

Вариации мощностей (26) для отдельного КЭ 
( )eV  с помощью 

представлений (27) можно записать в виде 

 
( )

( )

int ({ },{ }) { } [ ] [ ][ ] { };
e

e T

V

D W q y y B A B dV q       (27) 

 

( ) ( )

( ) ({ },{ })

{ } [ ][ ]{ } { } [ ][ ]{ } .
e e

e

ext

n

V

D W u v

y Ф R f dV y Ф S t d



  

     
 

Подставляя выражения (28) в (26), получаем для одного КЭ 

 
( ) ( ) ( )({ },{ }) { }([ ]{ } { });e e eW q y y K q F      (28) 

где обозначена ( )[ ]eK  ― локальная матрица жесткости и ( ){ }eF  ― 

вектор локальных правых частей 

 
( )

( )[ ] [ ] [ ][ ]
e

e T

V

K B A B dV  . (29) 

Подставляя выражение (29) в (25), получаем итоговую глобаль-

ную систему уравнений 
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 [ ( )]{ } { }K q q F , (30) 

где обозначена глобальная матрица жесткости [ ( )]K q  и глобальный 

вектор правых частей { }F  

 ( )[ ( )] [ ]e

e

K q K , ( ){ } { }e

e

F F , (31) 

 
( ) ( )

( ){ } [ ][ ]{ } [ ][ ]{ } .
e e

e

n

V

F Ф R f dV Ф S t d



     

Численный алгоритм решения вариационных постановок локаль-

ных и осредненной задач осуществляется на основе решения полу-

ченной системы уравнений (31), для решения которой применялся 

итерационный алгоритм с пересчетом координат узлов КЭМ в акту-

альной конфигурации. 

Был разработан программный модуль, в котором реализован 

предложенный численный алгоритм решения вариационных задач  на 

основе метода конечного элемента, с применением типичных проце-

дур этого метода [27]. Программный модуль разработан как состав-

ная часть программного комплекса Manipula/SMCM, созданного в 

НОЦ «Симплекс» МГТУ им. Н.Э. Баумана [28]. 

Пример численного моделирования.  В качестве примера раз-

работанного алгоритма был рассмотрен 3D ортогонально-

армированный композиционный материал, волокна которого ориен-

тированы по координатным направлениям. ЯП такого композита по-

казана на рис. 1. Для волокон и матрицы принималась одна и та же 

модель An (одного и того же класса с номером n).  

Рассматривались полулинейные модели n  [24], в которых 

упругий потенциал (8) имеет вид 

 
(n)(n) (n)

2 2

1 1 2 1

1
( , ) ( )( ( )) ( ) ( ).

2

i j jX l I l I   C C C  (32)  

Здесь 1( )jl  , 2 ( )jl   ― упругие константы, различные для матри-

цы и волокон. Численные значения этих констант были приняты сле-

дующими: 

 
1 2

1 2

для волокон: 100 МПа,  50 МПа,

для матрицы: 20 МПа,  10 МПа.

l l

l l

 

 
 (33) 

Тензор определяющих соотношений 
(n)

 для полулинейных моде-

лей An имеет вид [25] 

 
(n)(n) (n) (n)

4

1 1 2( ) ( ) 2 ( )j jl I l 
 

   
 

Ε C E C . (34) 
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На рис. 2-4  показаны некоторые результаты решения локальной 

задачи 0  (10) для модели v  для случая продольного растяжения 

вдоль оси 
1O . 

 
Рис. 1. ЯП 3D-армированного КМ 

 

На рис. 2  показаны распределения различных компонент  0 ij
P  

тензора напряжений Пиолы-Кирхгофа  0
P  в ЯП при растяжении. 

 

  
а) 

 

б) 

 

  
в) г) 
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1.9734е+00
-4.1471е+01
-2.8028е+00
-5.1908е+00
-7.5789е+00
-9.9670е+00

3.8990е+01
3.2302е+00
2.5605е+00
1.8908е+00
1.2211е+00
5.5141е-01
-1.1827е-01
-7.8796е-01
-1.4576е+00
-2.1273е+00
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д) 

 

е) 

 

Рис. 2. Поля распределения различных компонент 
 0 ij

P  (МПа) тензора напря-

жений Пиолы-Кирхгофа 
 0

P в ЯП 3D-армированного КМ при растяжении в 

направлении оси 1O :  а) ―
 0 11

P , б) ― 
 0 22

P , в) ― 
 0 33

P  , г) ― 
 0 12

P , 

д) ― 
 0 13

P , е) ― 
 0 23

P  
 

Продольные напряжения  0 11
P  (рис. 2а) достигают максималь-

ных значений в волокнах, ориентированных по направлению дей-

ствия нагрузки. Поперечные напряжения  0 22
P  и  0 33

P  достигают 

максимальных по абсолютной величине значений в зоне контакта 

поперечно расположенных волокон и матрицы. Величина этих 

напряжений сопоставима с величиной максимальных напряжений 
 0 11

P : они отличаются примерно в 4 раза, этот эффект является осо-

бенностью геометрически нелинейного деформирования материалов.  

Касательные напряжения  0 12
P ,  0 13

P  и  0 13
P  (рис. 2 г), д), е)) 

примерно на порядок меньше по максимальных значений напряже-

ния  0 11
P , их максимальное значение достигается на границе раздела 

матрицы и волокон.  

На рис. 3  показаны распределения различных компонент 
 1 i

u  

вектора перемещений 
 1

u  в ЯП 3D-армированного КМ при растяже-

нии. Распределение продольной компоненты 
 1 1

u  зависит, главным 

образом от продольной координаты  
1 , а компонента 

 1 2
u  ― зави-

сит, главным образом от поперечной координаты 
2 , ее значения яв-

ляются отрицательными при растяжении ЯП по оси 
1O , вследствие 

эффекта Пуассона. 

На рис. 4 показаны диаграммы деформирования  
(n)

1

11P   3D 

ортогонально-армированного композита, полученные с помощью 

осредненных определяющих соотношений задачи (15), где 
1

1

1 1F   . Диаграммы построены для 4 различных моделей An при 

одних и тех же значениях констант (34). Полученные диаграммы ка-
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2.1897е-01
-4.4553е-01
-1.1100е+00
-1.7745е+00
-2.4390е+00
-3.1036е+00
-3.7681е+00

8.3109е-02
-6.8807е-02
-2.2072е-01
-3.7264е-01
-5.2455е-01
-6.7647е-01
-8.2838е-01
-9.8030е-01
-1.1322е+00
-1.2841е+00
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чественно совпадают с подобными диаграммами, которые получают-

ся при аналитическом решении  задачи об одноосном растяжении 

бруса [25] для разных моделей An: для моделей AI, AII и AIII диа-

граммы деформирования имеют выпуклость вверх, а для моделей 

AIV и AV ― выпуклость вниз. В модели AIII – используется лога-

рифмический тензор деформации 
( )

ln
III

C U . 

  
а) 

 

б) 

 

Рис. 3. Поля распределения различных компонент 
 1 i

u  вектора перемещений 
 1

u  в ЯП 3D-армированного КМ при растяжении в направлении оси 1O :  

а) ― 
 1 1

u , б) ― 
 1 2

u  

 
Рис. 3. Диаграммы деформирования 3D-армированного КМ при одноосном 

растяжении для различных моделей An, определяющих соотношений матрицы и 
волокон, вычисленные с помощью разработанного алгоритма 

 

AI и AII диаграммы одноосного деформирования существуют 

только на ограниченном промежутке значений удлинения 
min max

1 1 1( , )    :  для AI значение max

1  составляет примерно 0,2     
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(20 %), а для модели AII ― примерно 0,4. При более высоких значе-

ниях max

1   происходит потеря физической устойчивости этих моде-

лей [25].  Для моделей AIII, AIV и AV ― этот эффект отсутствует,  

значения max

1 ― для этих моделей ограничены только предельными 

значениями деформации, при которых происходит разрушение мате-

риала. 
Выводы. Рассмотрен вариант метода асимптотического осред-

нения композиционных материалов при конечных деформациях с ис-
пользованием универсального представления определяющих соот-
ношений для комплекса различных моделей сжимаемых сред; 

Разработан алгоритм численного решения задач на ячейке пери-
одичности для композиционных материалов с конечными деформа-
циями и с использованием комплекса различных универсальных мо-
делей для сжимаемых сред. 

Предложена методика построения эффективных диаграмм де-
формирования для сжимаемых композитов с конечными деформаци-
ями на основе осреднения серий численного решения локальных за-
дач. 

Проведены серии численного моделирования эффективных диа-
грамм деформирования 3D ортогонально армированных композици-
онных материалов с конечными деформациями, показавшие эффек-
тивность разработанной методики. 
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Modeling of finite deformations of composite materials 

based on universal An models and the asymptotic averaging 

method 

 Yu.I. Dimitrienko, S.B. Karimov, A.Yu. Dimitrienko 

Bauman Moscow State Technical University, Moscow, 105005, Russia 

 

The paper is devoted to modeling the deformation of composite materials with finite de-

formations. The so-called universal models of constitutive relations for composite com-

ponents are considered, defining several classes of nonlinear relationship between the 

Piola-Kirchhoff stress tensor and the strain gradient within different energy pairs of 

stress-strain tensors. The method of asymptotic averaging is applied and local problems 

are formulated to solve the problem of determining the averaged properties of composites 

with finite deformations. A variational formulation of the original deformation problem, 

the so-called local problems on a periodicity cell and the averaged problem for a compo-

site is considered, which makes it possible to use FEM for the numerical solution of these 
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classes of problems. A software module has been developed as part of the SMCM soft-

ware package, which implements the proposed numerical algorithm. An example of the 

numerical solution of problems on a periodicity cell for a 3D orthogonally reinforced 

composite is given, taking into account large deformations of the matrix and fibers, and 

composite deformation diagrams are calculated for various variants of universal models 

of constitutive relations. 

 

Keywords: composites, finite deformations, asymptotic averaging method, universal An 

models, periodicity cell, finite element method 
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