doi: 10.18698/2309-3684-2024-3-1842
The problem of developing a universal criterion for long-term fatigue strength of isotropic materials, in which the accumulation of damage differs significantly under loading in the region of tension and compression, is considered. Usually, to model the durability of such materials, Goodman diagrams are used, which take into account the dependence of durability on the load asymmetry coefficient. However, this model, as a rule, contains only one so-called S-N curve, as a result of which the fatigue life curves at different asymmetry coefficients turn out to be self-similar, which is not always observed in experimental data. In addition, Goodman diagrams are only applicable for cyclic loading. This article proposes a further development of the “chemical” criterion, which was previously developed in the author’s works, and which is applicable for a wide range of loads, both long-term static and cyclic with a random form of the loading cycle. The development of the “chemical” criterion for fatigue strength was carried out by separately taking into account the accumulation of damage in the areas of tension and compression. For mixed loading modes in the tension-compression region, a special layer accumulates damage in the tension and compression areas. A method for determining the constants of the proposed fatigue life model has been developed. It is shown how Goodman diagrams are constructed for the developed version of the fatigue life criterion. An example of using the “chemical” criterion to simulate the fatigue life of 34CrNiMo6 steel is considered.
[1] Il'yushin A.A., Pobedrya B.E. Osnovy matematicheskoy teorii termovyazkouprugosti [Fundamentals of the mathematical theory of thermoviscoelasticity], Moscow, Nauka Publ, 1970, 282 p.
[2] Moskvitin V.V. Soprotivleniye vyazko-uprugikh materialov primenitel'no k zaryadam raketnykh dvigateley na tverdom toplive [Resistance of viscoelastic materials: Applied to solid fuel rocket engine charges]. Moscow, Nauka Publ, 1972, 327 p.
[3] Troshchenko V.T. Prochnost' metallov pri peremennykh nagruzkakh [Strength of metals under variable loads]. Kiyev, Naukova dumka, 1978, 176 p.
[4] Serensen S.V., Kogayev V.P., Shneyderovich R.M. Nesushchaya sposobnost' i rasety detaley mashin na prochnost' [Load-bearing capacity and strength tests of machine parts]. Moscow, Mashinostroenie Publ., 1975, 488 p.
[5] Bannantine J.A., Comer J.J., Handrock J.L. Fundamentals of metal fatigue analysis. Prentice Hall, 1990, 273 p.
[6] Bomas, H., Bacher-Hoechst, M., Kienzler, R., Kunow, S., Loewisch, G., Muehleder, F., Schroeder R. Crack initiation and endurance limit of a hard steel under multiaxial cyclic loads. Fatigue & Fracture of Engineering Materials & Structures, 2010, vol. 33, iss. 2, pp.126–139.
[7] Lüpfert, H.P., Spies H.J. Fatigue strength of heat-treated steel under static multiaxial compression stress. Advanced Engineering Materials, 2004, vol 6, iss. 7, pp. 544–550.
[8] Nikitin I.S., Burago N.G., Nikitin A.D., Yakushev V.L. Determination of the critical plane and assessment of fatigue durability under various cyclic loading regimes. PNRPU MECHANICS BULLETIN, no. 4, 2017, pp. 238-252.
[9] Kallmeyer A.R., Krgo A., Kurath P. Evaluation of multiaxial fatigue life prediction methodologies for Ti-6Al-4V. ASME. Journal of Engineering Materials and Technology, 2002, vol. 124, pp. 229–237.
[10] Papadopoulos I.V. Long life fatigue under multiaxial loading. International Journal of Fatigue, 2001, vol. 23, iss. 10, pp. 839–849.
[11] Inozemtsev А.А., Nikhamkin М.А., Sandratskiy V.L. Dinamika i prochnost' aviacionnyh dvigatelej i energeticheskih ustanovok [Dynamics and strength of aircraft engines and energy plants]. Moscow, Mashinostroenie Publ., 2008, 204 p.
[12] Dimitrienko Yu.I., Dimitrienko I.P. Prognozirovanie dolgovechnosti polimernyh elementov konstrukcij s pomoshch'yu "himicheskogo" kriteriya dlitel'noj prochnostiyu [Predicting the durability of polymer structural elements using the “chemical” criterion of long-term strength]. Voprosy oboronnoj tekhniki. Ser. 15. Kompozicionnye nemetallicheskie materialy v mashinostroenii [Issues of defense technology. Ser. 15. Composite non-metallic materials in mechanical engineering], no. 1, 2002, pp.15-21.
[13] Dimitrienko Yu.I., Dimitrienko I.P. [Calculation of fatigue resistance of composites based on the “chemical” criterion of long-term strength]. Raschet soprotivleniya ustalosti kompozitov na osnove "himicheskogo" kriteriya dlitel'noj prochnosti [Issues of defense technology. Ser. 15. Composite non-metallic materials in mechanical engineering], no. 1, 2002, pp. 21-25.
[14] Dimitrienko Yu.I. Mekhanika sploshnoy sredy. Tom 4. Universal'nye zakony mekhaniki i elektrodinamiki sploshnoj sredy [Continuum Mechanics. Vol. 4. Universal laws of mechanics and electrodynamics of a continuous medium]. Moscow, BMSTU Publ., Moscow, BMSTU Publ., 2011, 560 p.
[15] Dimitrienko Yu.I., Yurin Yu.V., Evropin S.V. Prognozirovanie dolgovechnosti i nadezhnosti elementov konstrukcij vysokogo davleniya. CHast' 1. CHislennoe modelirovanie nakopleniya povrezhdenij [Durability and Reliability forecasting of high pressure structures. Part 1. Computational 3D Modeling of damage]. Izvestiya vyshikh uchebnykh zavedeny. Mashinostroenie [Proceedings of Higher Educational Institutions. Маchine Building], 2013, no. 11, p. 3-11.
[16] Dimitrienko Yu.I., Yurin Yu.V., Shiverskiy E.A. Prognozirovanie dolgovechnosti i nadezhnosti elementov konstrukcij vysokogo davleniya. CHast' 2. CHislennoe statisticheskoe modelirovanie [Durability and Reliability forecasting of high pressure structures. Part 2. Computational Statistical modeling]. Izvestiya vyshikh uchebnykh zavedeny. Mashinostroenie [Proceedings of Higher Educational Institutions. Маchine Building], 2013, no. 12, p. 12-19.
[17] Dimitrienko Yu.I., Yurin Yu.V. Finite Element Modeling of Damage and Durability of Composite Structures with Local Delaminations. Mathematical Modeling and Computational Methods. 2017, no. 3, pp. 49–70.
[18] Yu. I. Dimitrienko and I. P. Dimitrienko. Long-term strength of reinforced composites. Mechanics of Composite Materials, 1989, vol. 25, no. 1, pp. 13-18.
[19] Goodman J. Mechanics applied to engineering. London, UK, Longmans Green, 1899, 770 p.
[20] Pallares-Santasmartas L., Albizuri J., Aviles A., Aviles R. Mean stress effect on the axial fatigue strength of din 34CrNiMo6 quenched and tempered steel. MDPI. Metals, 2018, vol. 8, iss. 4, art. 213, pp.1-19.
Димитриенко Ю.И., Димитриенко А.Ю. «Химический» критерий для моделирования усталостной долговечности материалов, разносопротивляющихся растяжению-сжатию. Математическое моделирование и численные методы, 2024, № 3, с. 18–42.
Количество скачиваний: 44