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Рассмотрена проблема разработки универсального критерия длительной усталост-
ной прочности изотропных материалов, у которых накопление повреждений суще-
ственно отличается при нагружении в области растяжения и сжатия. Обычно для 
моделирования долговечности таких материалов применяют диаграммы Гудмана, в 
которых учитывается зависимость долговечности от коэффициента асимметрии 
нагружения. Однако, эта модель, как правило содержит только одну так называе-
мую S-N кривую, в следствие чего кривые усталостной долговесности при разных ко-
эффициентах асимметрии оказываются самоподобными, что далеко не всегда 
наблюдается в экспериментальных данных. Кроме того, диаграммы Гудмана приме-
нимы только для циклических нагружений. В данной статье предложено дальнейшее 
развитие «химического» критерия, который был разработах ранее в авторских рабо-
тах, и который применим для широкого спектра нагрузок, как длительных статиче-
ских, так и циклических с произвольной формой цикла нагружения. Развитие «хими-
ческого» критерия усталостной прочности осуществлено за счет раздельного учета 
накоплений повреждений в области растяжения и сжатия. Для смешанных режимов 
нагружения в области растяжения-сжатия происходит суммирование особым обра-
зом накопления повреждений на участках растяжения и сжатия. Разработана ме-
тодика определения констант предложенной модели усталостной долговечности. 
Показано, как строятся диаграммы Гудмана для разработанного варианта критерия 
усталостной долговечности. Рассмотен пример применения «химического» критерия 
для моделирования усталостной долговечности стали 34СrNiMo6. 
 
Ключевые слова: «химический» критерий, усталость, долговечность, накопление 
повреждений, разносопротивляемость, растяжение-сжатие, диаграммы Гудмана 

  

Введение. Моделирование долговечности конструкций при пере-
менных, длительно действующих нагрузках, является одной основных 
задач проектирования практически всех видов ответственных изделий 
машиностроительной, авиационной, судостроительной, строительной, 
энергетической отраслей промышленности. Существует большое 
число различных критериев длительной прочности конструкционных 
материалов, укажем лишь некоторые из них [1-12]. Большинство этих 
критериев относятся к узкому классу процессов нагружения, напри-
мер, только к циклическому, монограмническому нагружению, или 
длительному статическому нагружению и т.п. [3,4,7,8]. Существенно 
меньше существует универсальных критериев, применимых для ши-
рокого спектра процессов нагружения. К таким универсальным крите-
риям относятся, например, интегральный критерий длительной проч-
ности А.А. Ильюшина [1] и критерий Бейли [2]. Однако и они имеют 
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ограничение: если осуществлять калибровку этих моделей (процедуру 
определения материальных констант моделей на основе обработки 
экспериментальных данных) на одном классе нагружения, например, 
длительном, то для циклических нагружений ошибка прогнозирова-
ния долговечности будет достаточно большой, и наоборот.  

В работах [13,14] был предложен так называемый «химический» 

критерий длительной прочности материалов, относящийся к универ-

сальным критериям. Название «химический» было дано потому, что 

этот критерий был основан на рассмотрении химического потенциала 

Боуэна [15] для вязкоупругих сред, как меры предельного состояния 

материала, достижение которой предельного значения приводит к за-

рождению макроразрушения. Химический потенциал для газов ши-

роко используется для моделирования фазовых превращений и хими-

ческих реакций в физической химии. В работах [13,14] была отмечена 

аналогия между предельными состояниями различной природы: нару-

шением связей между молекулами или атомами при фазовых или хи-

мических превращениях и механических нагружениях. На основе этой 

аналогии был предложен вид параметра повреждаемости в «химиче-

ском» критерии длительной прочности, который имеет интегральную 

(наследственную) форму по отношению к компонентам тензора 

напряжений. Структура этой интегральной зависимости в данном кри-

терии оказалась удачной, что позволило успешно применять «химиче-

ский» критерий как для длительных статических, так и для цикличе-

ских нагружений, в том числе с формой цикла, отличающейся от мо-

ногармонической [16-18].  

Однако для материалов, у которых накопление повреждений про-

исходит по-разному в области растяжения и сжатия, «химический» 

критерий давал не всегда хорошие результаты, поскольку в нем эф-

фект разносопротивляемости материалов накоплению повреждений 

учитывался только одним поправочным коэффициентом, что не поз-

воляло применять критерий в широком диапазоне видов нагрузок и 

для разных материалов. 

В данной работе предложено дальнейшее развитие химического 

критерия усталостной прочности (долговечности), в котором накопле-

ния повреждений при растяжении и сжатии учитываются как незави-

симые, для каждого вида нагружения вводится самостоятельный 

набор интегральных ядер, а смешанных режимах нагружения эти ядра 

суммируются определенным образом. 

«Химический критерий» длительной прочности материалов, 
разносопротивляющихся растяжению-сжатию. Разрушение изо-
тропного материала точке (в узле КЭ, в точке КЭ) конструкции насту-

пает, когда впервые в момент времени *t  выполняется   условие 

  * 1z t  , (1) 
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где  z t  — параметр повреждаемости. 

Параметр повреждаемости  z t  согласно «химическому крите-

рию» [13] длительной и усталостной прочности,  в основе которого 
лежит концепция разрушения материала при достижении химическим 
термодинамическим потенциалом [15]  предельного значения,  со-
стоит из 3-х частей 

      0 r dz t z z t z t    (2) 

где 
0z  — мгновенная часть повреждений, описывающая условно 

мгновенную прочность материала, не зависящую от длительности и 

истории действия напряжений;  rz t  — обратимая часть поврежде-

ний, которая описывает накопление повреждений при длительно дей-
ствующих нагрузках, в том числе переменных (т.е. явление устало-
сти), но без учета длительного «отдыха» , на этапах отдыха, когда нет 
нагрузок, эта часть  повреждений постепенно залечивается и стре-

мится к нулю;  dz t  — необратимая часть повреждений, которая опи-

сывает накопление повреждений при длительно действующих нагруз-
ках, в том числе переменных (т.е. явление усталости), и не убывает на 
этапах «отдыха». 

Модель мгновенных повреждений. Рассмотрим далее только 

изотропные материалы. Для изотропных материалов параметр 
0z  — 

выбирается согласно «трех-поверхностной модели» статической проч-
ности, предложенной в работе [18] 

 
  

2
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здесь  обозначены инварианты тензора напряжений:   — первый, 
u   

— второй, 
 и  

 — знакопостоянные:  

 
ii  ,  

1

2
     , 

3

2
u ij ijs s  , (4) 

где 
ij  — компоненты тензора напряжений в декартовой с.к., а 

1

3
ij ij ijs    , компоненты девиатора тензора напряжений. Далее бу-

дут использованы также компоненты 
3

2
ij ijs s . 

В выражении (3) введены также обозначения для 
T , 

C , 
S  — 

пределов мгновенной прочности при растяжении, сжатии и сдвиге, ко-
торые связаны между собой следующими соотношениями: 

3 0C S T     .                                       
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Константы 
СB  и 

T 
 (предел прочности при всестороннем растя-

жении) выражаются  через пределы статической прочности при растя-

жении, сжатии и сдвиге 

 
2

2

1
1

3

C
С

S C

B


 

 
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 

, 

1/2

2 2

1 1

3
T

T S


 





 
  
 

. (5) 

Функция  V   в выражении (3) описывает гладкий переход 

накопления микро-повреждений между областями растяжения и сжа-
тия: 

 

0, если 0

( ) , если  0

если

C

C C

V



   
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

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  

. (6) 

Модель (3) с учетом (6) позволяет учитывать эффект различия 

накопления повреждений в области растяжения и сжатия, который ха-

рактерен для большинства материалов. По сравнению с работой [18] в 

выражении (3) константы прочности при растяжении и сдвиге явля-

ются независимыми и не связаны соотношением 3 S T  . При нали-

чии этого соотношения предел прочности при всестороннем растяже-

нии 
T    и второе слагаемое в (3) обращается в ноль. 

Модель накопления обратимых повреждений. Для обратимой 

части накопления повреждений  rz t  в «химическом критерии» дли-

тельной прочности принимается следующая модель 
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 (7) 

Здесь  ,K t    и  2 ,t     ядра накопления повреждений, 

обусловленные предысторией девиаторной части напряжений  ijs  , 

а  1 ,K t    и  1 ,t     — ядра накопления повреждений, обуслов-

ленные предысторией  шаровой части напряжений    . 

Наличие двух ядер для каждой части напряжений: девиаторной и 

шаровой — это специфическая особенность именно «химического» 

критерия длительной прочности, оно позволяет успешно описывать 

эффект возрастания повреждений при переменных (циклических) 

нагружениях по сравнению со статическими напряжениями.  
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Для материалов, разносопротивляющихся при растяжении и сжа-

тии,  ядра  ,K t   ,  2 ,t    ,  1 ,K t    и   1 ,t     будем 

полагать зависящими от знака первого инварианта   

( , ) ( ) ( ) ( ) ( )t t h t h              , 
1 1{ , , , }K K Г Г , (8) 

где обозначены функции Хевисайда 

 
1,  если 0

( )
0,  если 0

h








 


 , ( ) 1 ( )h h    . (9) 

Для всех 8 ядер принимается модель степенных функций 
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то есть ядра в (7) полагаются слабосингулярными, где 

 
0K  , 

0Г
 , 

10K  , 
10Г   и   ,   , 

1
 , 

1
 , (11) 

— константы модели. 
Модель накопления необратимых повреждений. Для необрати-

мой части повреждений  dz t  в «химическом критерии» длительной 

прочности принимается следующая модель: 
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 (12) 

   Здесь 

 
dK  , 

dK  , 
dГ
 , 

dГ
 , 

1dK  , 
1dK  , 

1dГ  , 
1dГ   (13) 

— константы модели. 
Модель (12) учитывает:  различие накоплений необратимых по-

вреждений при растяжении и сжатии (учитывается функциями  h   

и  h  ); различие накоплений повреждений, обусловленных   
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предысторией девиаторной части напряжений ( )ijs   (наличие первых 

4 интегралов в (12)), и  шаровой части напряжений ( )   (наличие 5..8-

го     интегралов в (12)); эффект возрастания необратимых поврежде-
ний при снижении напряжений, которое характерно для циклических 
нагружений (за счет наличия интегралов в (12) со знаком минус). 

 Простое нагружение. Рассмотрим процесс простого (пропорци-

онального) нагружения, когда все напряжения изменяются во времени 

пропорционально одной функции времени ( )t  (функции нагруже-

ния): 

 
0( ) ( )ij ijt t   , (14) 

где 
0 constij  . При решении задач расчета упругих конструкций с по-

мощью МКЭ, функция ( )t  обычно полагается заданной, а напряже-

ния 
0

ij  вычисляются. Поэтому знак функции ( )t  может меняться, 

если нагружение происходит по заданному циклу растяжение-сжатие, 

и знак у напряжений 
0

ij  тоже может меняться при переходе от одной 

точки конструкции к другой.  

В силу (14) величины 
ijs , 

u  и  
 также пропорциональны функ-

ции   

 

0 0 0

0 0 0 0

0 0 0 0 0 1 2 0 0 0

( ) ( ),  ( ) ( ) ,  ( ) ( ),

3 1
( ) ( ),  ,

2 3

1
 ,  ( ) ,   ( ).

2

ij ij u u

ij ij ij

kk u ij ij kk kk

s t s t t t t t

t t s

s s | |

      

     

     

 





  

 
   

 

   

 (15) 

Поскольку знак первого инварианта (+ или -) 
0( ) ( )      опре-

деляется сочетанием знаков функций 
0  и ( )  , то функции Хеви-

сайда (9) могут быть представлены следующим образом: 

 
            

            

0 0

0 0

,

.

h h h h h

h h h h h

       

       

    

    

 

 
 (16) 

Подставляя выражения (15) и (16) в (7), получаем, что для про-

стого нагружения обратимую часть накопления повреждений ( )rz t  

можно записать в виде 

      02 0 02 0

1, ,r uz t Ф t Ф t     , (17) 

где обозначены функции 
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              

               

0 0 0

0 0 0

1 1 1 1 1

, ( ),

, .

Ф t h K t Г t h K t Г t

Ф t h K t Г t h K t Г t

  

  

     

     

   

   
 (18) 

Здесь введены обозначения для функций, не зависящих от напря-

жений 
0

ij  

 

    

    

     
     

2

0

2

0

2 2

0 0

2 2

0 0

( ) ( ) ( ) ,

( ) ( ) ( ) ,

( ) ( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( ) ( ) .

t

t

t t

t t

K t K t h K t h d

K t K t h K t h d

Г t t h d t h d

Г t t h d t h d

     

     

         

         

    

    

    

    

   

   

     

     





 

 

 (19) 

Аналогичный вид имеют функции, описывающие объемное 

накопление повреждений 
1 ( )K t , 

1 ( )Г t , 
1 ( )K t , 

1 ( )Г t . 

Подставляя выражения (15) и (16) в (12) , получаем, что для про-

стого нагружения необратимую часть накопления повреждений ( )dz t  

можно записать в виде 

    02 0 02 0

1( ) , ,d u d dz t Ф t Ф t     . (20) 

где обозначены функции 

 
       

       

0 0 0

0 0 0

1 1 1 1 1

, ( ) ( ) ( ) ( ) ,

, ( ) ( ) ( ) ( ) .

d

d

Ф t h N t Q t h N t Q t

Ф t h N t Q t h N t Q t

  

  

     

     

   

   
 (21) 

где введены функции 

 
( ) ( ) ( ),  ( ) ( ) ( ),

( ) ( ) ( ),  ( ) ( ) ( ),

d d d d

d d d d

N t K N t K N t Q t Г Q t Г Q t

N t K N t K N t Q t Г Q t Г Q t

         

       

   

   
 (22) 

а также обозначены 

1 1
2 2

1 1

0 0
( ) | ( ) ,  ( ) | ( ) ,| |

t t

N t h d N t h d

 

      

 

 

 

    
   

       
   
   

 

1 1
2 2

1 1

0 0

2 2 2 2
1 1

1 1

0 0

( ) | ( ) ,  ( ) | ( ) ,

( ) | ( ) ,  ( ) ( ) ,

| |

| |

t t

t t

N t h d N t h d

Q t h d Q t h d

 

 

 

 

     

     

 

 

 

 

 

   

 

    

   
       
   

   
    
   
   

 

 

 (23) 
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2 2 2 2
1 1

1 1

0 0
( ) | ( ) ,  ( ) | ( ) .| |

t t

Q t h d Q t h d

 

      

 

 

 

   
   

    
   
   
   

Аналогичный вид имеют функции, описывающие объемное 

накопление повреждений 
1 ( )N t , 1 ( )Q t

, 
1 ( )N t , 1 ( )Q t

. 

Мгновенные повреждения (3) для простого нагружения (14) 

вычисляются как значения параметра 
0z , достигнутые при 

максимальных значениях инвариантов 
u  и 

, которые стоят в 

числителях в (3). т.е. 

 
 

  
 

2 2

0 22

max max

3 1

u

TS С m

z
B V

 

 





 


, (24) 

где 

 
0max max ( )u u t   ,  0 0max , ,g      

            0 0 0, max ming h h h h            , (25) 

    01 1
max min max ( ) min ( )

2 2
m t t         . 

Циклическое нагружение. Рассмотрим случай циклического из-

менения напряжений по моногармоническому закону, когда  функция 

нагружения ( )t  имеет вид 

   
1

( ) sin 2
1

t k t
k

  


, (26) 

где   — круговая частота нагружения; k  — параметр асимметрии 

цикла, его значение  изменяется в диапазоне: k    .  
Максимальное и минимальное значение функции нагружения 

( )t  за цикл колебаний вычисляются следующим образом: 

 
1

max ( )
1

k
t

k






, 

1
min ( )

1

k
t

k






, max ( ) 1t  . (27) 

а амплитуда 
a  и среднее (медианное) значение 

m  за цикл колебаний 

вычисляются по формулам 

 

 

 

1 1
max ( ) min ( ) ,

2 1

1
max ( ) min ( ) .

2 1

a

m

t t
k

k
t t

k

  

  

  


  


 (28) 
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Так как max ( ) 1t  , то значения 0

ij  являются максимальными 

значениями компонент напряжений в цикле колебаний. 

Параметр асимметрии k  можно выразить через часто используе-

мый коэффициент асимметрии цикла r , который определяется как 

 
min ( ) 1

max ( ) 1

t k
r

t k






 


, 

1

1

r
k

r





. (29) 

Обычно этот параметр r  вводится для случая нагружения, когда 

все напряжения известны и для определенности полагают, что 
0

0ij  .  

Для произвольного случая нагружения, когда напряжения 
0

ij  опреде-

ляются в процессе решения задачи методом МКЭ и могут иметь раз-

ные знаки при переходе от одной точки конструкции к другой, понятие 

минимума/ максимума функции ( )t  и напряжений 
ij  могут отли-

чаться с точностью до наоборот.  Поэтому для определенности, здесь 

понятия минимума/ максимума вводятся  именно  для функции ( )t .   

Различные значения параметра k  позволяют описать не только 

циклическое, но и длительное статическое нагружение: 

 

 
 

 
 

 

 1   

 

с

1   

1  0 1   

— длительное статическое растяжение;

— длительное статическое сжатие;

— циклическое растяж

1

ение;

— цикл

л

1 1   

1 

ическое сжатие;

— цик ическое ра и0   стяжен е-

k r

k r

k r

k r

k r

  

  

    

      

      жатие;

 (30) 

Из выражений (30) видно, что параметр асимметрии k  более ин-

формативен, чем широко используемый в приложениях коэффициент 

аисмметрии r ,  т.к. r  имеет одинаковые значения для длительного 

статического растяжения и сжатия. 

Будем рассматривать многоцикловое нагружение (26), в котором 

число циклов  n t  велико: 21 10n    ( t  — целая часть цикла). 

Пусть период колебаний в (26) 1T    много меньше характерного 

времени процессов накопления повреждений 0t . Тогда можно ввести 

малый параметр : 

 
0 0

1
1

T

t t 

     (31) 

Существование двух масштабов характерного времени позволяет 

ввести «быстрое» время y  и «медленное» безразмерное время t : 

 
t

y t  , 
0

t
t

t
 . (32) 
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Гармоническую функцию ( )t  (26) можно считать функцией  

быстрого времени ( )y : 

     
1 1

( ) sin 2 sin 2 ( )
1 1

t k t k y y
| k | k

       
 

. (33) 

Ядра повреждаемости  K t ,  t  в (10) и (19) являются функци-

ями ‘медленного’ времени.  
Имеет место следующая теорема [19]: интеграл от функций вида 

   ( )K t f    в формулах (19) может быть представлен в следую-

щем виде: 

 
     

   

0 0

1

0 0

( ) ( ) ( )

( ) ( ),

t t

t

K t f d K t f y d

K t d f y dy O

      

  

   

  

 

 
 (34) 

т.е. ‘медленное’ и ‘быстрое’ времена считаются независимыми, а 

 O  означает члены, имеющие величину малого порядка  по срав-

нению с первым членом в (34).  

Вводя осреднение по быстрому времени 

 
1

0
( )f f y dy    (35) 

формулу (34) можно записать в виде 

    
0 0

( ) ( ) ( )
t t

K t f d f K d          . (36) 

Черту сверху далее над медленным временим опускаем.   

С учетом основной формулы (36) интегралы в формулах (19) при 

циклическом нагружении (26) преобразуются следующим образом: 

 

   

   

2 2

0 0

2 2

0 0

2 2

0 0

2 2

0 0

( ) ( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( ) ( ) .

t t

t t

t t

t t

K t h K d h K d

K t h K d h K d

Г t h Г d h Г d

Г t h Г d h Г d

       

       

       

       

    

    

    

    

    

    

    

     

 

 

 

 

 (37) 

Аналогичный вид принимают функции 
1 ( )K t , 

1 ( )Г t , 
1 ( )K t , 

1 ( )Г t , описывающие объемное накопление повреждений при цикли-

ческом нагружении. 
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 Введем обозначение для функций, осредненных по периоду коле-

баний, которые зависят только от коэффициента асимметрии нагруже-

ния k  

 

2 2

1 1

2 2

2 2

( ) ( ) ,  ( ) ( ) ,

( ) ( ) ,  ( ) ( ) .

f k h f k h

f k h f k h

   

   

   

   

   

   
 (38) 

Графики функций (38) показаны на рисунке 1. 

 
Рис. 1. Графики функций 

1 ( )f k  (1) и 
2 ( )f k  (2) 

 

Эти функции (38) обладают «хорошими» свойствами: они явля-

ются монотонно-возрастающими, ограниченными, удовлетворяют со-

отношению 
1 2( ) ( )f k f k  , имеют горизонтальную асимптоту ( ) 1sf k   

при k   , и  ( ) 0sf k   при 1k   . 

 Функции 
1 ( )f k  и 

2 ( )f k  удовлетворяют соотношениям 

 
1 1( ) ( )f k f k   , 

2 2( ) ( )f k f k   . (39) 

С учетом введенных обозначений и степенной зависимости (10) 

функции (37) можно записать так 

 

1 1

0 0
1 1

1 1

0 0
1 1

2 2 2 2 2 2

0 0
2 22 2

2 2 2 2 2 2

0 0
2 22

( ) ( ) ( ) ,
1 1

( ) ( ) ( ) ,
1 1

( ) ( )
( ) ( ) ( ) ,

(1 ) (1 )

( ) ( )
( ) ( ) ( )
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Подставляя выражения (40) в (18), находим функцию  0,Ф t   

при циклическом нагружении 
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 (41) 

где введены обозначения 
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 Аналогчный вид имеют функции  0

1 ,Ф t  . 

С учетом формулы (36) интегралы в формулах (22) и (23) при цик-

лическом нагружении (26) преобразуются следующим образом: 
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где обозначены функции от параметра асимметрии k  
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 (44) 

Подставляя выражения (42) в (21), находим функцию  0,dФ t   

для циклического нагружения 
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где введены обозначения 
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Для функции  0

1 ,dФ t   получаем аналогичные выражения, с ана-

логичными обозначениями с «1» в соответствующих индексах. 

С помощью выражений (40) и (44) получаем выражения для со-

ставных частей (17), (20) параметра повреждаемости (57) для случая 

циклического нагружения 
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 (47) 
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 (48) 

Найдем выражение для мгновенной части повреждений при цик-

лическом нагружении, используя формулы (25). Вычисляем макси-

мальные и медианное значения инвариантов с учетом формул (27) и 

(28) 
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 (49) 

Графики функции ( )g k  и ( )g k  показаны на рисунке 2. 

Тогда из (24) получаем выражение для мгновенной части повре-

ждений 
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  

  
02 02

2
0

0 22
, .

3 1

u

TS С m

z g k
B V

 


  
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 (50) 

 
Рис. 2. Графики функции ( )g k

(1) и ( )g k
(2) 

 

Общее выражение для параметра повреждаемости при икличе-

ском нагружении с учетом (47), (48) и (50) можно представить в виде 

 

1 1 1 1

02 1 2 2 1 2 2

2

1

0 2
1 2 2 1 2 202

1 1 1 12

1
( )

3 ( )

( ( , ))
.

u K Г K Г

S m

K Г K Г

T

z t N t N t N t N t
V

g k
N t N t N t N t

   

   


 






   

   

       

      



 
      

 

 
     

 

 (51) 

Коэффициенты, входящие в это выражение, имеют вид 
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Аналогичный вид имеют коэффициенты  0

1 ,KN k  ,  0

1 ,ГN k  , 

 0

1 ,KN k   и  0

1 ,ГN k  . 

Подставляя (50) в (1), получаем критерий усталостной прочности 
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Модель без накопления объемных повреждений.  Рассмотрим 

более простую модель, в которой повреждения, вызванные чисто объ-

емными напряжениями, отсутствуют, тогда 

 
1 0KN   , 

1 0ГN   , 
1 0KN   , 

1 0ГN   . (54) 

и, следовательно, из (53) имеем критерий усталостной прочности 
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Одноосное циклическое нагружение. Рассмотрим одномерное 

циклическое растяжение-сжатие, когда 

 
11 0  , а остальные 0ij  . (56) 

Подставляя (55) в (4), находим выражение для инвариантов 

 
11  , 11u  . (57) 

Подставляя (56) в (14), (15), (27) и (48), получаем 
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Пусть для определенности 0

11 0  . Тогда  0 1h   ,   0 0h     

и, следовательно, из (41), (45) и (45) 
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т.е. все эти функции при одноосном нагружении зависят только от па-

раметра асимметрии k . Соответственно и функции (52) также в этом 

случае зависят только от k  
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Критерий усталостной прочности (55) при одноосном цикличе-

ском переменном растяжении-сжатии с учетом (58) и (60) принимает 

вид 
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Здесь обозначен условный предел статической прочности при рас-

тяжении-сжатии, зависящий от k  и 0

11  
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Модель без учета необратимых повреждений. При постоянно 

действующих циклических нагружениях можно рассмотреть упро-

щенную модель, в которой не учитываются необратимые поврежде-

ния. В этой модели все константы (13) являются нулевыми, и следова-

тельно 

  1 1 1 1  , , ,0,   , , , , ,  ( ) 0.d d d d d d d d dK K Г Г K K Г Г z t             (63) 

Методика определения констант упрощенной модели. Для 

упрощенной модели (62) имеется 11 ненулевых констант 

 ,   ,   ,T C S    (64) 

 
0 0 0 0,  ,  ,  ,  ,  ,  ,  .K K Г Г             (65) 

Константы (63) определяются из экспериментов на статическую 

прочность. Укажем методику определения констант (64) для этой мо-

дели. 

 Для решения этой задачи необходимо иметь по 2 точки на 4 экс-

периментальных кривых усталости при одноосном циклическом рас-

тяжении и сжатии при разных коэффициентах асимметрии k  (рис. 4): 

  0 ( )

11 11 * 1 2 3 4 1 2 3 4, ,   { , , , },   , 1,   , 1.Э k t k k k k k k k k k      (66) 
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   Точки на этих кривых (65) — это точки на плоскости  0

* 11,t   

(время нагружения  — максимальное напряжение цикла ( ) ,s I ) 

    ( )

* ( ) ( ) 11 *, ,   1,2,   1,..., 4,   , ,Э

I s I s I s It I s k t      (67) 

где 
*It  — моменты времени усталостного разрушения. 

Рассмотрим отдельно 2 кривые усталости при циклическом растя-

жении, при 
1 2, 1k k  . Тогда используем уравнение усталостной проч-

ности (61). Запишем его для двух точек (67) и двух коэффициентов 

1 2, 1k k   

 
     

1/2

0 1 2 2

11 * * *2

1
, ,

1, 2,    1, 2.

s I K s I Г s I

T

k t N k t N k t

I s

 


 



    
   
 

 

 (68) 

Приравняем левые части в уравнении (66) (это эксперименталь-

ные точки) и в уравнении (68) (это математическая модель).  Тогда, 

возводя в (-2) степень левую и правую части получившихся уравне-

ний, получим 

 
   1 2 2

* * 2 2

( )

1 1
,

1, 2,   1, 2.

K s I Г s I

s I T

N k t N k t

I s

 

 

      

 

 (69) 

Подставим в эту систему выражения  (60) для ( )KN k
и ( )ГN k

для 

случая  упрощенной модели (63) 

 
   

2
1 2 20 0

1 * 2 *2 2 2

( )

( ) 1 1
,

1 (1 )

1,2,   1, 2.

s I s I

s I T

K Г
f k t f k t

I s

 

   

 
 

   

 
  

 

 

 (70) 

В результате получим систему 4-х уравнений  относительно 4-х 

неизвестных 
0K  , 

0Г
 ,   ,   .   

Введем обозначения 

 

 

 

 

2

01 2 20
* *2

2 2

( )

,   ,
1 1

1 1
,   ,   1, 2,   1, 2.

I I I I

Is I s Is

s I T

ГK
U t V t

H f k S I s

 

 

 

 


   






 
 

    

 (71) 

Тогда систему уравнений (70) можно записать в виде 
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1 2I s I s IsU H V H S   , 1,2I  , 1,2s  . (72) 

Это линейная система 4-х уравнений относительно 4-х неизвест-

ных 
IU   и 

IV  .  Решая эту систему, находим  

 

 

 

1 22 2 21

1 12 2 11

11 22 12 21

1
,

1
,

.

I I I

I I I

U S H S H

V S H S H

H H H H

  

  

 


 


  

 (73) 

После того, как определены 
IU   и 

IV  , воспользуемся соотношени-

ями (80) . Поделим каждое из их уравнений при 1I   на соответству-

ющее уравнения при 2I  , тогда получим 

 
1

*1 1

1
2*2

t U

Ut









 


 , 

2 2

*1 1

2 2
2*2

t V

Vt









 


 . (74) 

Из этих уравнений находим   ,    

 1 2 1 2

*1 *2 *2 *1

ln ( ) ln ( )
1 2 2

ln ( ) ln( )

U U V V

t t t t
 

   
  

     
 

 (75) 

После этого, возвращаясь к (71), находим 0K 
, 0Г


 

 
 1

0 1

*1

1U
K

t 




 






 ,  

 
2

2 1

0 2 2

*1

1V
Г

t 




 






 . (76) 

Аналогичным методом находим константы 
0K  , 

0Г
 ,   ,    из 

усталостных кривых при циклическом сжатии. 

Диаграмма Гудмана для «химического» критерия усталост-

ной прочности. Кривую усталости (61) при одноосном циклическом 

нагружении можно представить в виде диаграммы Гудмана [20]. Для 

этого в (61) зафиксируем время 
*t  и запишем его в виде 

      
2

0 2 0

11 11 *
ˆˆ , ,С k W k t  


  , (77) 

где обозначена функция 

   1 2 2 1 2 2

* * * * *
ˆ , ( ) ( ) ( ) ( ) .K Г K ГW k t N k t N k t N k t N k t             

     (78) 

Найдем решение уравнения (61) относительно максимального 

напряжения цикла 0

11  при фиксированных 
*t  и k  

  0

11 *,W k t  . (79) 
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Подставим теперь в (79) вместо k и 0

11  их выражения  через 
m и 

a , полученные с помощью (58), тогда получим  две ветви кривой на 

плоскости ( , )m a   

 

 

 

*

*

, ,   0,

, ,   0,

.

m a

a m

m

a

W k t k

W k t k

k

 

 





  

  



 (80) 

Вводя вместо 
*t  число циклов до разрушения 

* * /t n  , из (80) 

получаем предельную диаграмму Гудмана. 

Пример численного моделирования. В качестве примера приме-

нения разработанной модели и алгоритма вычислений была рассмот-

рена сталь 34СrNiMo6, усталостные кривые которой при разных коэф-

фициентах асимметрии k были взяты из работы [21].  Пределы стати-

ческой прочности этой стали были выбраны следующими: 

 1.2 ГПа,T   1.6 ГПа,C   0.8 ГПа.S   

Были получены следующие константы (11) модели усталостной 

прочности для данной стали, с помощью применения разработанного 

вычислительного алгоритма: 

 
1 10.6389,  0.8202,  0.8859,  0.9439,           

  
2

2 1 2 2 2

0 00.01438 ГПа c ,  0.001278 ГПа c ,K Г          

 2 1

0 0.1727 ГПа cK    ,  
2

2 2 2

0 0.00485 ГПа c .Г      

Кривые усталостной прочности, полученные для этой стали с по-

мощью разработанной модели по формуле (61) для разных коэффици-

ентов асимметрии k , показаны на рисунке 3. На этом же рисунке кри-

выми с точками показаны экспериментальные значения кривых уста-

лости, взятые из работы [21]. Совпадение результатов моделирования 

с экспериментальными данными достаточно хорошее для этого типа 

данных. 

На рисунке 4 показаны диаграммы Гудмана для стали 34СrNiMo6, 

полученные расчетным путем с помощью разработанного варианта 

«химического» критерия усталостной прочности. Диаграммы постро-

ены для 3-х значений числа циклов 5 6 710 ,  10 ,  10n   Гц. 

 Диаграммы Гудмана показывают существенное различие уста-

лостных свойств стали 34СrNiMo6 при циклическом нагружении в об-

ласти растяжени и сжатия, а также в смешанном цикле растяжение-
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сжатие. Разработанный вариант «химического» критерия усталостной 

прочности позволяет получить аналитические зависимости для моде-

лирования усталостной прочности конструкций при различных режи-

мах циклического нагружения, в том числе не моногоармонического. 

 

 
Рис. 3. Расчетные и экспериментальные (линии с точками) 

кривые усталости для стали 34СrNiMo6 при различных значениях 

коэффициента асимметрии k  

 

 
Рис. 4. Диаграммы Гудмана для стали 34СrNiMo6 при циклическом нагружении 

для значений 5 6 7

* 10  (1),  10  (2),  10  (3)n  , построенные с помощью 

предложенного «химического» критерия усталостной прочности 
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Выводы. Разработан вариант «химического» критерия усталост-

ной прочности для материалов, разносопротивляющихся цикличе-

скому нагружения в области растяжения и сжатия.  Критерий приме-

ним для решения 3-х мерных задач расчета усталостной прочности и 

долговечности конструкций при различных значениях коэффициента 

асимметрии нагружения.  Разработан алгоритм определения констант 

модели усталостной прочности с помощью кривых усталости при раз-

личных коэффициентах асимметрии. 

Приведен пример расчета кривых усталостной прочности и диа-

грамм Гудмана для стали 34СrNiMo6. Показано, что разработанный 

вариант «химического» критерия усталостной прочности обеспечи-

вает достаточно хорошее совпадение результатов моделирования с 

экспериментальными данными для различных значений коэффициен-

тов асимметрии. 
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«Chemical» criterion for modeling the fatigue life of  

materials with different resistance to tension 

and compression 

 Yu.I. Dimitrienko, A.Yu. Dimitrienko 

Bauman Moscow State Technical University, Moscow, 105005, Russia 

 

The problem of developing a universal criterion for long-term fatigue strength of isotropic 

materials, in which the accumulation of damage differs significantly under loading in the 

region of tension and compression, is considered. Usually, to model the durability of such 

materials, Goodman diagrams are used, which take into account the dependence of dura-

bility on the load asymmetry coefficient. However, this model, as a rule, contains only one 

so-called S-N curve, as a result of which the fatigue life curves at different asymmetry 

coefficients turn out to be self-similar, which is not always observed in experimental data. 

In addition, Goodman diagrams are only applicable for cyclic loading. This article pro-

poses a further development of the “chemical” criterion, which was previously developed 

in the author’s works, and which is applicable for a wide range of loads, both long-term 

static and cyclic with a random form of the loading cycle. The development of the “chem-

ical” criterion for fatigue strength was carried out by separately taking into account the 

accumulation of damage in the areas of tension and compression. For mixed loading 

modes in the tension-compression region, a special layer accumulates damage in the ten-

sion and compression areas. A method for determining the constants of the proposed fa-

tigue life model has been developed. It is shown how Goodman diagrams are constructed 

for the developed version of the fatigue life criterion. An example of using the “chemical” 

criterion to simulate the fatigue life of 34CrNiMo6 steel is considered. 

 

Keywords: “chemical” criterion, fatigue, durability, damage accumulation, resistance dif-

ference, tension-compression, Goodman diagrams 
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