539.36 Modeling microstructural model of the plasticity deformation theory for transversally isotropic composites

Dimitrienko Y. I. (Bauman Moscow State Technical University), Sborschikov S. V. (Bauman Moscow State Technical University), Dimitrienko A. Y. (Lomonosov Moscow State University), Yurin Y. V. (Bauman Moscow State Technical University)

COMPOSITES, NUMERICAL MODELING, DEFORMATION THEORY OF PLASTICITY, TRANSVERSALLY ISOTROPIC MATERIALS, MICROSTRUCTURAL MODEL, ASYMPTOTIC AVERAGING METHOD, FINITE ELEMENT METHOD, UNIDIRECTIONALLY REINFORCED COMPOSITES, METAL COMPOSITES, STRAIN DIAGRAMS, INVARIANTS


doi: 10.18698/2309-3684-2022-1-1541


Within the framework of the deformation theory of plasticity under active loading, a model of constitutive relations for elastic-plastic composites belonging to the class of transversally isotropic materials is proposed. The theory of spectral expansions of stress and strain tensors and the spectral representation of nonlinear tensor functions for transversely isotropic media are used to develop a nonlinear constitutive relations. Specific models of plasticity functions are proposed, depending on the spectral invariants of the strain tensor. To determine the model constants, a method is proposed in which these constants are calculated based on the approximation of deformation curves obtained by direct numerical solution of three-dimensional problems on the periodicity cell of elastic-plastic composites. Problems on the periodicity cell are formulated using the method of asymptotic averaging of periodic media. The numerical solution of problems on the periodicity cell is carried out using the finite element method within the framework of software developed at the Scientific and Educational Center "Supercomputer Engineering Modeling and Development of Software Systems" of Bauman Moscow State Technical University. An example of numerical calculation of the constants of a composite model using the proposed method for a unidirectionally reinforced composite based on carbon fibers and an aluminum alloy matrix is given. Examples of verification of the proposed model for different loading trajectories of the composite in a 6-dimensional stress space are given. It is shown that the proposed microstructural model and the algorithm for determining its constants provide a sufficiently high accuracy in predicting the elastic-plastic deformation of transversely isotropic composites


Kandpal B.C., Kumar J., Singh H. Fabrication and characterisation of Al2O3/aluminium alloy 6061 composites fabricated by Stir casting. Materials Today: Proceedings, 2017, vol. 4, iss. 2, pp. 2783–2792.
Kainer K.U. Metal Matrix Composites: Custom‐made Materials for Automotive and Aerospace Engineering. Wiley, 2006, 330 p.
Mileiko S.T. Oxide-fibre/Ni-based matrix composites – III: A creep model and analysis of experimental data. Composites Science and Technology, 2002, vol. 62, iss. 2, pp.195–204.
Rawal S. Metal-matrix composites for space applications. JOM, 2001, vol. 5, iss. 4, pp. 14–17.
Dvorak G.J. Inelastic deformation of composite materials. Springer-Verlag. 1990, 779 p.
Kovtunov A.I., Mamin S.V., Semistenova T.V. Sloistyye kompozitsionnyye materialy: elektronnoye uchebnoye posobiye. [Layered composite materials: electronic textbook]. Togliatti, TSU Publ., 2017, 75 p.
Adams D.F. Uprugoplasticheskoe povedenie kompozitov. Kompozitsionnye materialy. T. 2: Mekhanika kompozitsionnykh materialov [Elastic-plastic behavior of composites. Composite materials. Vol. 2: Mechanics of composite materials]. Moscow, Mir Publ., 1978, pp. 196–241.
Bilim A.V., Saraev L.A., Sahabiev V.A.The persicularities of two–component composite materials elastic–plastic deformation. Vestnik of Samara University, 1998, no. 4, pp. 113–119.
Nguyen B.N., Bapanapalli S.K., Kunc V., Phelps J.H., Tucker C.L. Prediction of the elastic–plastic stress/strain response for injection–molded long–fiber thermoplastics. Journal of Composite Materials, 2009, vol. 43, no. 3, pp. 217–246.
Pobedrya B.E. Mekhanika kompozitsionnykh materialov [Mechanics of composite materials]. Moscow, Lomonosov Moscow State University Publ., 1984, 324 p.
Bakhvalov N.S., Panasenko G.P. Osrednenie protsessov v periodicheskikh sredakh. Matematicheskie zadachi mekhaniki kompozitsionnykh materialov [Averaging processes in periodic media. Mathematical problems of the composite material mechanics]. Moscow, Nauka Publ., 1984, 352 p.
Sanches–Palensiya E. Neodnorodnye sredy i teoriya kolebaniy [Nonhomogeneous media and vibration theory]. Moscow, Mir Publ., 1984, 472 p.
Bensoussan A., Lions J.L., Papanicolaou G. Asympotic analysis for periodic structures. North-Holland, 1978, 721 p.
Vildeman V.E., Sokolkin Yu.V., Tashkinov A.A. Mekhanika neuprugogo deformirovaniya i razrusheniya kompozitsionnykh materialov [Mechanics of inelastic deformation and destruction of composite materials]. Moscow, Nauka Publ., 1997, 288 p.
Manevich L.I., Andrianov I.V., Oshmyan V.G. Mechanics of Periodically Heterogeneous Structures. Springer-Verlag, 2002, 276 p.
Khdir Y.K., Kanit T., Zaïri F., Naït–Abdelaziz M. Computational homogenization of elastic-plastic composites. International Journal of Solids and Structures, 2013, vol. 50, no. 18, pp. 2829–2835.
Eglit M.E. New Models Arising in the Averaged Description of Microinhomogeneous Media. Proceedings of the Steklov Institute of Mathematics, 1998, vol. 223, pp. 94–104.
Dimitrienko Yu.I., Kashkarov A.I., Makashov A.A. Finite element calculation of effective elastic-plastic characteristics of composites based on the method of asymptotic averaging. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2007, no. 1, pp. 102–116.
Dimitrienko Y.I., Sborschikov S.V, Yurin Y.V. Modeling of effective elastic–plastic properties of composites under cyclic loading. Маthematical Modeling and Coтputational Methods, 2020, № 4, pp. 3–26.
Dimitrienko Y.I., Gubareva E.A., Sborschikov S.V., Bazyleva O.A., Lutsenko A.N., Oreshko E.I. Modeling the elastic–plastic characteristics of monocrystalline intermetallic alloys based on microstructural numerical analysis. Маthematical Modeling and Coтputational Methods, 2015, no. 2, pp. 3–22.
Dimitrienko Y.I., Gubareva E.A., Sborschikov S.V. Multiscale modeling of elastic–plastic composites with an allowance for fault probability. Маthematical Modeling and Coтputational Methods, 2016, no. 2, pp. 3–23.
Dimitrienko Y.I., Gubareva E.A., Cherkasova M.S. Modeling the deformation of layered periodic composites based on the theory of plastic flow. Маthematical Modeling and Coтputational Methods, 2021, no. 2, pp. 15–37.
Dimitrienko Yu.I., Sborschikov S.V., Dimitrienko A.Yu., Yurin Yu.V. Modeling microstructural model of the plasticity defor-mation theory for quasiisotropic composite materials. Маthematical Modeling and Coтputational Methods, 2021, no. 4, pp. 17–44.
Dimitrienko Yu.I. Tenzornoe ischislenie [Tensor calculus]. Moscow, Higher School Publ., 2001, 576 p.
Dimitrienko Yu.I. Mekhanika sploshnoj sredy. T. 1. Tenzornyj analiz [Continuum Mechanics. Vol. 1. Tensor analysis]. Moscow, BMSTU Publ., 2011, 367 p.
Ilyushin A.A. Plastichnost'. Uprugo-plasticheskie deformacii [Plasticity. Elastic-plastic deformations]. Moscow, URSS, 2018, 392 p.
Ilyushin A.A., Lensky V.V. Soprotivlenie materialov [Resistance of materials]. Moscow, Fizmatlit Publ., 1959, 372 p.
Moskvitin V.V. Ciklicheskie nagruzheniya elementov konstrukcij [Cyclic loading of structural elements]. Moscow, URSS, 2019, 344 p.
Bondar V.S., Danshin V.V. Plastichnost'. Proporcional'nye i nepro-porcional'nye nagruzheniya [Plasticity. Proportional and disproportionate loads]. Moscow, Fizmatlit Publ., 2008, 176 p.
Gorshkov A.G., Starovoitov E.I., Yarovaya A.V. Mekhanika sloistyh vyazkoupru-goplasticheskih elementov konstrukcij [Mechanics of layered viscoelastic structural elements]. Moscow, Fizmatlit Publ., 2005, 576 p.
Dimitrienko Yu.I. Mekhanika sploshnoy sredy. Tom 4. Osnovy mekhaniki tverdogo tela [Continuum Mechanics. Vol. 4. Fundamentals of solid mechanics]. Moscow, BMSTU Publ., 2013, 624 p.
Dimitrienko Y.I., Dimitrienko I.D., Sborschikov S.V. Multiscale hierarchical modeling of fiber reinforced composites by asymptotic homogenization method. Applied Mathematical Sciences, 2015, vol. 9. iss. 145–148, pp. 7211–7220.
Dimitrienko Yu.I., Kashkarov A.I. Finite Element Method of Calculation of Efficient Characteristics of Composites with Periodical Structure. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2002, no. 2, pp. 95–108.
Certificate no. 2019666176 Programma NonlinearEl_Disp_Manipula dlya prognozirovaniya diagramm nelinejno-uprugogo deformirovaniya dispersno-armirovannyh kompozitov pri malyh deformaciyah na osnove konechno-elementnogo resheniya 3D lokal'nyh zadach mikromekhaniki: svidetel'stvo ob ofic. registracii programmy dlya EVM [The program NonlinearEl_Disp_Manipula for predicting diagrams of nonlinear elastic deformation of dispersed-reinforced composites under small deformations based on the finite element solution of 3D local problems of micromechanics: certificate of ofic. registration of a computer program] / Yu.I. Dimitrienko, Yu.V. Yurin, S.V. Sobshchikov, I.O. Bogdanov; applicant and copyright holder: BMSTU — no. 2019665098; application 26.11.2019; registered in the register of computer programs 05.12.2019 — [1].
Certificate no. 2019666172 Programma StrengthCom SMCM dlya konechno-elementnogo rascheta prochnostnyh harakteristik kompozitnyh materialov so slozhnoj strukturoj s uchetom nakopleniya mikro-povrezhdenij i kinetiki mezoskopicheskih defektov: svidetel'stvo ob ofic. registracii programmy dlya EVM [The StrengthCom SMCM program for finite element calculation of strength characteristics of composite materials with a complex structure, taking into account the accumulation of micro-damage and the kinetics of mesoscopic defects]: certificate of ofic. registration of a computer program / Yu. I. Dimitrienko, E. A. Gubareva, Yu. V. Yurin, S. V. Sobshchikov, I. O. Bogdanov; applicant and copyright holder: BMSTU — no. 2019665109; application 26.11.2019; registered in the register of computer programs 05.12.2019 — [1].
Certificate no. 2018614767 Programma MultiScale_SMCM dlya mnogomasshtabnogo modelirovaniya napryazhenno-deformirovannogo sostoyaniya konstrukcij iz kompozicionnyh materialov, na osnove metoda mnogourovnevoj asimptoticheskoj gomogenizacii i konechno-elementnogo resheniya trekhmernyh zadach teorii uprugosti [MultiScale_SMCM program for multiscale modeling of the stress-strain state of structures made of composite materials, based on the method of multilevel asymptotic homogenization and finite element solution of three-dimensional problems of elasticity theory]: certificate of ofic. registration of computer programs/ Yu.I. Dimitrienko, S.V. Sborshchikov, Yu.V. Yurin; applicant and copyright holder: BMSTU —no. 2018677684; application 21.02.2018; registered in the register of computer programs 17.04.2018 — [1].


Димитриенко Ю.И., Сборщиков С.В., Димитриенко А.Ю., Юрин Ю.В. Микроструктурная модель деформационной теории пластичности трансверсально-изотропных композитов. Математическое моделирование и численные методы, 2022, № 1, с. 15–41.



Download article

Количество скачиваний: 352