539.3 Modeling of effective elastic–plastic properties of composites under cyclic loading

Dimitrienko Y. I. (Bauman Moscow State Technical University), Sborschikov S. V. (Bauman Moscow State Technical University), Yurin Y. V. (Bauman Moscow State Technical University)

COMPOSITES, PLASTICITY, CYCLIC LOADING, DEFORMATION THEORY OF PLASTICITY, DISPERSED-REINFORCED COMPOSITES, ASYMPTOTIC AVERAGING METHOD, FINITE ELEMENT METHOD, NUMERICAL SIMULATION


doi: 10.18698/2309-3684-2020-4-326


A method is proposed for calculating the effective elastic–plastic properties of composites under cyclic loading. The technique is based on the application of the method of asymptotic averaging of periodic structures for the case of materials with elastic-plastic properties under cyclic loading. A model of the deformation theory of plasticity by A.A. Il’yushin – V.V. Moskvitin under cyclic loading using the Masing model for changing the plasticity function under cyclic deformation. Local problems of the theory of plasticity for the periodicity cell of a composite material, as well as averaged problems of the theory of anisotropic plasticity under cyclic loading are formulated. A software module has been developed for the finite element solution of local problems on the periodicity cell. The software of the SMCM complex developed at the Scientific and Educational Center "Supercomputer Engineering Modeling and Development of Software Systems" of the Bauman Moscow State Technical University was used. The SMCM complex is designed for finite element modeling of the properties of composite materials. Numerical calculations of the elastic-plastic properties of dispersed-reinforced composites based on an aluminum alloy and SiC ceramic particles have been carried out. Calculations have shown that the developed technique can be used to predict cyclic deformation diagrams of elastic-plastic composites in a wide range of loading conditions, as well as to design new composite materials with specified properties.


[1] Mileiko S.T. Oxide-fibre/Ni–based matrix composites–III: A creep model and analysis of experimental data. Composites Science and Technology, 2002, vol. 62, iss. 2, pp. 195–204.
[2] Rawal S. Metal–matrix composites for space applications. JOM, vol. 53, no. 4, pp. 14–17.
[3] Ilyushin A.A. Plastichnost'. Uprugo–plasticheskie deformacii [Plasticity. Elastic–plastic deformations]. Moscow, URSS Publ., 2018, 392 p.
[4] Ilyushin A.A. Plastichnost': osnovy obshchej matematicheskoj teorii [Plasticity: fundamentals of general mathematical theory]. Moscow, URSS Publ., 2020, 272 p.
[5] Ilyushin A.A., Lensky V.V. Soprotivlenie materialov [Resistance of materials]. Moscow, Fizmatgiz Publ., 1959, 372 p.
[6] Moskvitin V.V. Ciklicheskie nagruzheniya elementov konstrukcij [Cyclic loading of structural elements]. Moscow, URSS Publ., 2019, 344 p.
[7] Bondar V.S., Danshin V.V. Plastichnost'. Proporcional'nye i neproporcional'nye nagruzheniya [Plasticity. Proportional and disproportionate loads]. Moscow, Fizmatlit Publ., 2008, 176 p.
[8] Adams D.F. Uprugoplasticheskoe povedenie kompozitov. Kompozitsionnye materialy. T. 2: Mekhanika kompozitsionnykh materialov [Elastic-plastic behavior of composites. Composite materials. Vol. 2: Mechanics of composite materials]. Moscow, Mir Publ., 1978, pp. 196–241.
[9] Nguyen B.N., Bapanapalli S.K., Kunc V., Phelps J.H., Tucker C.L. Prediction of the elastic-plastic stress. strain response for injection-molded long-fiber thermoplastics. Journal of Composite Materials, 2009, vol. 43, no. 3, pp. 217–246.
[10] Pobedrya B.E. Mekhanika kompozitsionnykh materialov [Mechanics of composite materials]. Moscow, Lomonosov Moscow State University Publ., 1984, 324 p.
[11] Vildeman V.E., Sokolkin Yu.V., Tashkinov A.A. Mekhanika neuprugogo deformirovaniya i razrusheniya kompozitsionnykh materialov [Mechanics of inelastic deformation and destruction of composite materials]. Moscow, Nauka Publ., 1997, 288 p.
[12] Dimitrienko Yu. I., Kashkarov A. I., Makashov A. A. Finite element calculation of effective elastic-plastic characteristics of composites based on the method of asymptotic averaging. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2007, no. 1, pp. 102–116.
[13] Dimitrienko Yu.I., Lutsenko A.N., Gubareva E.A., Oreshko E.I., Bazyleva O.A., Sborschikov S.V. Calculating of mechanical characteristics of heat resistant intermetallic alloys on the basis of nickel by method of multi-scale modeling of structure. Aviation Materials and Technologies, 2016, no. 3, pp. 33–48.
[14] Dimitrienko Y.I., Gubareva E.A., Sborschikov S.V. Multiscale modeling of elastic-plastic composites with an allowance for fault probability. Маthematical Modeling and Coтputational Methods, 2016, № 2, pp. 3–23.
[15] Bensoussan A., Lions J.L., Papanicolaou G. Asymptotic analysis for periodic structures. North-Holland, 1978, 721 p.
[16] Bakhvalov N.S., Panasenko G.P. Osrednenie protsessov v periodicheskikh sredakh. Matematicheskie zadachi mekhaniki kompozitsionnykh materialov [Averaging processes in periodic media. Mathematical problems of the compo­site material mechanics]. Moscow, Nauka Publ., 1984, 352 p.
[17] Sanches-Palensiya E. Neodnorodnye sredy i teoriya kolebaniy [Nonhomogeneous media and vibration theory]. Moscow, Mir Publ., 1984, 472 p.
[18] Manevich L.I., Andrianov I.V., Oshmyan V.G. Mechanics of Periodically Heterogeneous Structures. Springer–Verlag, 2002, 276 p.
[19] Khdir Y.K., Kanit T., Zaïri F., Naït-Abdelaziz M. Computational homogenization of elastic-plastic composites. International Journal of Solids and Structures, 2013, vol. 50, no. 18, pp. 2829–2835.
[20] Gorshkov A.G., Starovoitov E I., Yarovaya A.V. Mekhanika sloistyh vyazko-uprugoplasticheskih elementov konstrukcij [Mechanics of layered viscoelastic structural elements]. Moscow, Fizmatlit Publ., 2005, 576 p.
[21] Dimitrienko Yu. I., Kashkarov A. I. Finite element method for calculating the effective characteristics of spatially reinforced composites. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2002, no. 2, pp. 95–108.
[22] Dimitrienko Y.I., Gubareva E.A., Sborschikov S.V. Finite element modulation of effective viscoelastic properties of unilateral composite materials. Маthematical Modeling and Computational Methods, 2014, no. 2, pp. 28–48.
[23] Dimitrienko Yu.I. Method of multilevel homogenization of hierarchical periodic structures. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2002, no. 1, pp. 58–73.
[24] Dimitrienko Yu.I., Dimitrienko I.D. Simulation of local transfer in periodic porous media. European Journal of Mechanics — B/Fluids, 2013, vol. 37, pp. 174–179.
[25] Dimitrienko Yu.I., Dimitrienko I.D., Sborschikov S.V. Multiscale Hierarchical Modeling of Fiber Reinforced Composites by Asymptotic Homogenization Method. Applied Mathematical Sciences, 2015, vol. 9, no. 145, pp. 7211–7220.
[26] Dimitrienko Yu.I. Mekhanika sploshnoy sredy. Tom 4. Osnovy mekhaniki tver­dogo tela [Continuum Mechanics. Vol. 4. Fundamentals of solid mechanics]. Moscow, BMSTU Publ., 2013, 624 p.
[27] Dimitrienko Yu.I. Tenzornoe ischislenie [Tensor calculus]. Moscow, Vysshaya shkola Publ., 2001, 575 p.
[28] Certificate no. 2019666176 Programma NonlinearEl_Disp_Manipula dlya prognozirovaniya diagramm nelinejno-uprugogo deformirovaniya dispersno-armirovannyh kompozitov pri malyh deformaciyah na osnove konechno-elementnogo resheniya 3D lokal'nyh zadach mikromekhaniki: svidetel'stvo ob ofic. registracii programmy dlya EVM [The program NonlinearEl_Disp_Manipula for predicting diagrams of nonlinear elastic deformation of dispersed-reinforced composites under small deformations based on the finite element solution of 3D local problems of micromechanics: certificate of ofic. registration of a computer program] / Yu.I. Dimitrienko, Yu.V. Yurin, S.V. Sobshchikov, I.O. Bogdanov; applicant and copyright holder: BMSTU — no. 2019665098; application 26.11.2019; registered in the register of computer programs 05.12.2019 — [1].
[29] Certificate no. 2019666172 Programma StrengthCom SMCM dlya konechno-elementnogo rascheta prochnostnyh harakteristik kompozitnyh materialov so slozhnoj strukturoj s uchetom nakopleniya mikro-povrezhdenij i kinetiki mezoskopicheskih defektov: svidetel'stvo ob ofic. registracii programmy dlya EVM [The StrengthCom SMCM program for finite element calculation of strength characteristics of composite materials with a complex structure, taking into account the accumulation of micro-damage and the kinetics of mesoscopic defects]: certificate of ofic. registration of a computer program / Yu. I. Dimitrienko, E. A. Gubareva, Yu. V. Yurin, S. V. Sobshchikov, I. O. Bogdanov; applicant and copyright holder: BMSTU — no. 2019665109; application 26.11.2019; registered in the register of computer programs 05.12.2019 — [1].


Димитриенко Ю.И., Сборщиков С.В., Юрин Ю.В. Моделирование эффектив-ных упруго–пластических свойств композитов при циклическом нагружении. Ма-тематическое моделирование и численные методы, 2020, № 4, с. 3–26.



Download article

Количество скачиваний: 311