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Предложена методика расчета эффективных упруго-пластических свойств компо-

зитов при циклическом нагружении. Методика основана на применении метода 

асимптотического осреднения периодических структур для случая материалов с 

упруго-пластическими свойствами при циклическом нагружении. Рассмотрена         

модель деформационной теории пластичности А.А. Ильюшина – В.В. Москвитина 

при циклических нагружениях c использованием модели Мазинга для изменения 

функции пластичности при циклическом деформировании. Сформулированы локаль-

ные задачи теории пластичности для ячейки периодичности композиционного ма-

териала, а также осредненные задачи теории анизотропной пластичности при 

циклическом нагружении. Разработан программный модуль для конечно-элемент-

ного решения локальных задач на ячейке периодичности. Использовано программное 

обеспечение комплекса SMCM, разработанного в Научно-образовательном центре 

«Суперкомпьютерное инженерное моделирование и разработка программных ком-

плексов» (НОЦ «Симплекс») МГТУ им. Н.Э. Баумана. Комплекс SMCM предназначен 

для конечно-элементного моделирования свойств композиционных материалов. 

Проведены численные расчеты упруго–пластических свойств дисперсно–армиро-

ванных композитов на основе алюминиевого сплава и керамических частиц SiC.             

Расчеты показали, что разработанная методика может быть использована для 

прогнозирования циклических диаграмм деформирования упруго–пластических ком-

позитов в широком диапазоне условий нагружения, а также для проектирования 

новых композиционных материалов с заданными свойствами. 

 

Ключевые слова: композиты, пластичность, циклические нагружения, деформа- 

ционная теория пластичности, дисперсно-армированные композиты, метод асимп-

тотического осреднения, метод конечного элемента, численное моделирование 

 

Введение. В настоящее время существует большой интерес к раз-

работке композиционных материалов на металлической матрице, 

называемых также металло–матричными композиционными материа-

лами (ММКМ) [1,2]. В отличие от других типов композиционных ма-

териалов – на основе полимерных, керамических или углеродных мат-

риц, ММКМ обладают такими уникальными свойствами как: возмож-

ностью длительной (десятки и сотни часов) эксплуатации при высоких 

температурах, в том числе в окислительных средах при одновремен-

ных значительных механических нагрузках,  высокой ударной вязко-

стью, повышенной стойкостью к ударным нагрузкам, наличием значи-

тельных  предельных деформаций в пластической области, а также 

возможностью изготовления конструкций с помощью сварки и         

другими свойствами. Важной особенностью ММКМ является              
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повышенная стойкость к циклическому нагружению, при высоком 

уровне нагрузок, в том числе при высоких температурах. Эти важные 

особенности позволяют эффективно применять ММКМ при создании 

элементов конструкций перспективных авиационных двигательных 

систем, в том числе, газотурбинных двигателей, деталей теплонагру-

женных конструкций авиационной, ракетно-космической, металлур-

гической, химической промышленности. 
Для расчета элементов металлических конструкций при цикличе-

ском нагружении в настоящее время применяются различные теории 
пластичности и вязкопластичности. Наибольшую популярность 
имеют деформационные теории пластичности [3–7] и различные тео-
рии течения [8, 9]. Деформационные теории, разработка которых свя-
зана с именами Г. Генки, А.Л. Надаи, А.А. Ильюшина, В.С. Ленского, 
В.В. Москвитина, В.С. Бондаря и другими, обладают важными пре-
имуществами — относительной простотой при численных расчетах, 
которая обусловлена возможностью эффективного применения ме-
тода последовательных приближений [3], при помощи которого задача 
теории пластичности сводится к последовательному решению задач 
теории линейной упругости с изменяемым тензором модулей упруго-
сти. Несмотря на определенные ограничения, связанные с наличием 
теоретического обоснования применения данной теории лишь для 
простых (пропорциональных) нагружений, она активно применяется 
для расчета инженерных конструкций, особенно, когда требуется по-
лучить результаты расчета достаточно быстро для сложных конструк-
ций, в том числе деформационная теория пластичности применяется и 
для расчета конструкций из композиционных материалов [10, 11], в 
том числе с применением метода асимптотического осреднения                  
[9, 12–14]. Однако до настоящего времени отсутствуют работы, в ко-
торых были бы предложены методы построения определяющих соот-
ношений деформационной теории пластичности при циклических 
нагружениях для композитов.    

Целью настоящей работы является разработка метода построения 
определяющих соотношений теории анизотропной пластичности при 
циклических нагружениях для композиционных материалов с перио-
дической структурой. Метод основан на применении теории асимпто-
тического осреднения (методе асимптотической гомогенизации              
[9,15–19]) к периодическим структурам (композитам), подчиняю-
щимся деформационной теории пластичности А.А. Ильюшина – В.В. 
Москвитина [6, 20] при циклическом нагружении. 

Постановка задачи деформационной теории пластичности для 
неоднородных сред при циклическом нагружении. Рассмотрим 
конструкцию, изготовленную из композиционного материала (КМ), 

которой в пространстве 
3R  соответствует некоторая область V c               

поверхностью  . Композит обладает периодической структурой                
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[10, 15-17, 21-25] , и так что область V  c точностью до краевых эффек-
тов можно представить как совокупность большого числа элементар-

ных представительных объемов — ячеек периодичности V  (ЯП). 

Каждая ЯП V  состоит из N  компонент , 1...V N   : компоненты с 

индексами  1,..., 1N    представляют собой включения различных 

типов (наполнители), а компонента с индексом  N   —  это матрица. 

Обозначим 
N  — поверхности контакта матрицы и включений, а 

N  — поверхность контакта в рамках одной ЯП V , включения по-

лагаем не контактирующими между собой.  
Включения и матрицу полагаем изотропными упруго–пластиче-

скими, соответствующими деформационной теории пластичности             

[3, 6]. Тогда в каждой области , 1...V N    в декартовых ортонорми-

рованных координатах 
ix , согласованных с периодической структу-

рой КМ, имеем следующую задачу механики упруго-пластических 
сред [26]:  
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где ij  —  компоненты тензора напряжений, 
kl  —  компоненты        

тензора малых деформаций, 
lu  —  компоненты вектора перемещений, 

l ku  — частные производные по координатам 
ix , jn  — компоненты 

вектора единичной нормали,  ,ij kl mF x — компоненты тензорного —

оператора упруго–пластичности, зависящей от тензора малых дефор-

маций, а также от цикла нагружения, ее выражение будет приведено 

ниже,  iS t  — компоненты вектора внешних усилий, заданные на            

части 
  внешней поверхности композитной конструкции,  eiu t  — 

компоненты вектора внешних перемещений, заданные на части 
u  

внешней поверхности конструкции, причем u     , здесь                      

t  — время. 

Положим, что функции  iS t  и  eiu t  являются переменными во 

времени и пропорциональны одной функции времени, т.е. имеет место 

простое (пропорциональное) нагружение 
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        , ,o o

i i ei iS t S t u t u t     (2) 

где  t  скалярная функция времени (функция нагружения), для ко-

торой выделим  промежутки  1,n nt t с ее возрастанием или убыванием. 

На каждом нечетном промежутке  1,n nt t , где 2 1n m  , 0,1,2, ,m   

функция  t  — неубывающая (   0t  ), а на каждом четном            

n ом промежутке, где 2n m , функция  t  — невозрастающая         

(   0t  ). Введём приращения  функции нагружения на каждом про-

межутке 
1[ , )n nt t
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Минус выбираем таким образом, чтобы на каждом промежутке 

1[ , )n nt t
выполнялось условие  

     0,
n

t    (4) 

т.е. чтобы все приращения были неотрицательными, причем полагаем:  

      0

0 0, 0 0, 0.t t       (5) 

Тогда исходную функцию  t  можно представить через прира-

щения следующим образом: 
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Такой способ задания функции нагружения, позволяет учитывать 

циклы активного нагружения (когда   0t  ) и пассивного нагруже-

ния (разгрузки, когда   0t  ).       

Будем искать решение задачи (1) также в виде представления (6)  
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или 
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где 
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Тогда задача (1) может быть представлена как серия n задач для 

отдельных промежутков  1,n nt t , на каждом из которых имеем задачи 

относительно приращений неизвестных функций: 
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  (9) 

Здесь функции  n

ijF  — зависят, вообще говоря, от номера (n), так 

как общая зависимость  ,ij ij kl mF x   — является нелинейной.               

Задача (9) при каждом n  имеет место на промежутке  1,n nt t , 

1,2,n  . 

Модель деформационной пластичности при циклическом 

нагружении. Функцию  n

ijF  зададим следующим образом. Запишем 

для тензоров напряжений и деформаций на каждом n ом цикле 

нагружения  их представление с помощью девиаторов [27] 
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  — шаровые части тензоров 
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Аналогичные представления имеют место для приращений 
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Тогда, согласно общей деформационной теории пластичности 

А.А. Ильюшина – В.В. Москвитина [6], для каждого n го цикла 

нагружения изотропных сред примем следующие определяющие        

соотношения пластичности  
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где обозначены 
 n

u , 
 n

u — вторые инварианты (интенсивности) [27] 

приращений тензоров напряжений и деформаций 
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         

     

         

     

  (14) 

Соотношения между первыми инвариантами 
  ( )n n

kk    , 

  ( )n n

kk     приращений тензоров напряжений и деформаций полага-

ются линейно-упругими, согласно классическим положениям дефор-

мационной теории пластичности [3, 4, 6], K  — модуль объемного                 

сжатия. 

Функции пластичности     n n

uФ   в каждом цикле построим со-

гласно модели Мазинга [6, 20] 

 

    

 
 

 

1 1

0

,

,  2,3, ,

1 ,

u u

n
n u

u n

n

n

Ф

Ф n

n


 


 



 



 
   

 

 

  (15) 

где 
0, const    — масштабные коэффициенты, а 

  1

uФ   — функ-

ция пластичности на 1-м цикле нагружения, она задаётся в следующем 

виде 

 
          1 1 1 1

2 1 ,u u u uФ G         (16) 



Моделирование эффективных упруго–пластических свойств… 

9 

где   1

u   — функция пластичности А.А. Ильюшина, которую              

выбираем в виде 

 
  

(1)

21 (1)(1)

0

0,  

,  .
1 exp 1

u s

u u su

s

b

 

   




 
     

            

  (17) 

Здесь 
s  — деформация начала пластичности, 

0 , b  — кон-

станты, характеризующие упрочнение при пластичности, G  —                   

модуль сдвига. 

Подставляя (15) в  (13), а затем в (12), определяющие соотношения 

на n -ом цикле запишем в следующем виде 

        
( )

( ) ,
n

n n n nu
ij ij kl ijkl kl

n

F C


   


  
       

  

  (18) 

где обозначены компоненты приведенного тензора модулей упругости 

      
( )

2
( ) ,

3

n
n nu

ijkl ij kl ik jl il jk

n

C K G G


      


  
      

  

  (19) 

который зависит от пластических деформаций, где  

 
 

 

1

n
n u

n

G G





  
     

  

  (20) 

— переменный модуль сдвига в n ом цикле. 

Появление делителей 
n  приводит к изменению предела текуче-

сти 
 n

s  в n ом цикле  

 

   

 
 

1 1

2

2

2

1

2

2 ,

2

:  

:   

u s s s

u

s s s

n

n

n

G

G

   


   







  

  
  (21) 

и т.д.  

Поскольку в задаче композит рассматривается как неоднородная 

среда, то все коэффициенты, характеризующие упруго–пластические 

свойства компонентов, рассматриваются как функции координат 

 
 

 0 0

,

,  , ,  ,  ,  ,  .

m

s

x

G K b a  

 

 
  (22) 
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Осуществим линеаризацию определяющих соотношений (18), а 

затем подставим их в систему уравнений (9), в результате получим 

следующую последовательность задач 

 

  

    
  

  

        

     

             

1

1

0

2

:  0,  0

,   ,
u

n m

i ij

n m
n m n n mu

ij ijkl kl

n

n m n m n m

kl l k k l

n m n m

N ij j i

n m n n m no o

ij j i m i i m

C

u u

n u

n S t u u t







  







  





 

   


  
       

   
      

        

   

     


  (23) 

где m  — номер итерации. 

Применение метода асимптотического осреднения. В силу            

периодичности структуры композита, можно ввести малый параметр 

æ  и локальные координаты 
i  

 1, , ,i i
i i

x xl
x

L L
   æ

æ
  (24) 

где l  — характерный размер ЯП V , а L  — диаметр области V.  

Согласно методу асимптотического осреднения  [10, 21, 25]  для 

композита решение задачи (23) ищем в виде асимптотического разло-

жения по параметру æ  

 
   

 

( ){ } ( ){ }(0) ( ){ }(1)

2 ( ){ }(2)

, , ,

              , , ...

n m n m n m

i i i i i j

n m

i i j

u u x t u x t

u x t





     

  

æ

æ
  (25) 

Здесь и далее все функции вида  ( ){ }(1) , ,n m

i i ju x t  предполагаются 

периодическим по координатам j  и медленно-меняющимися по 
ix  

по ЯП V , поэтому областью определения функций (25) является де-

картово произведение множеств max[0, ]V V t  , где V — область, со-

ответствующая всей композитной конструкции в безразмерных коор-

динатах 
ix . Функции вида  ( ){ }( ) , ,n m s

i i ju x t  дифференцируются по 

правилу дифференцирования сложной функции: 

 
1

.i

i i i i i ix x x x



 

    
   

     æ
  (26) 
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Введем обозначения для производных 

 ( ){ }( ) ( ){ }( ) ( ){ }( ) ( ){ }( )

, |, .n m s n m s n m s n m s

i i k i i k

k k

u u u u
x 

 
        (27) 

Тогда, подставляя разложение (25) в соотношения Коши и опреде-

ляющие соотношения задачи (23), получаем асимптотические разло-

жения для  приращений деформаций 
ij
 , перемещения 

i
u  и напряже-

ния 
ij

  рассматриваются как квазипериодические функции 

 ( ){ } ( ){ }( ) ( ){ } ( ){ }( )

0 0

, .n m n n m s n m n n m s

ij ij ij ij

s s

   
 

 

      æ æ   (28) 

Здесь обозначены 

 

        

     

( ) ( ) ( )

, .

( 1) ( 1)

| |

2

,

n m s n m s n m s

kl k l l k

n m s n m s

k l l k

u u

u u



 

    

 
  (29) 

а также  

        ( ) { 1}( ') ( ')

' 0

,
s

n m s n m s s n m s

ij ijkl kl

s

C 
 



     (30) 

где  { 1}( ')n m s s

ijklC
 

 — тензоры приведенных модулей упругости, полу-

ченные при разложении тензоров 
 

  1n m
n u

ijkl

n

C





  
    

  

 в асимптотиче-

ский ряд, после подстановки в качестве аргумента ряда (28). Выпишем 

главный член этого разложения 

        (0) { 1}(0) (0)
,

n m n m n m

ij ijkl klC 


     (31) 

 
   

  1 (0)
{ 1}(0)

.

n m
n m n u

ijkl ijkl

n

C C








  
     

  

  (32) 

Подставляя (28) в уравнение равновесия системы (23), получаем: 

   (0)1 ( ){ }( ) ( ){ }( 1)

| , |

0

( ) 0.
n m n n m s n m s

ij j ij j ij j

s

  


 



    æ æ   (33) 

Приравнивая члены при 1æ к нулю, а при остальных  næ  - к не-

которым постоянным  величинам  
( ){ }( )n m s

ih , получаем следующее раз-

ложение уравнения (33) 
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 ( ){ }( )

0

0,n n m s

i

s

h




æ   (34) 

а также следующие соотношения (локальные уравнения равновесия) 

   (0)

| 0 0,,
n m

ij j s     (35) 

 ( ){ }( ) ( ){ }( 1) ( ){ }( )

, | 1,2,3,...,n m s n m s n m s

ij j ij j ih s        (36) 

Подстановка разложений (25) и (28) в граничные условия и усло-

вия контакта в ЯП, приводит к следующим соотношениям для каждого 

члена  асимптотического ряда 

      ( ) ( 1)
:  0,  0.

n m s n m s

N ij j in u 
       

   
  (37) 

Локальные задачи на ячейке периодичности. Введем условия 

периодичности для основных функций  

 
   

1/2 1/2

( )( ){ }( ) ( ){ }( )

[[ ]] 0,

,  ,  ,
n m sn m s n m s

i ij klu

 
  

 

 
   

    
  (38) 

а также введем операцию осреднения по ЯП 

 .
V

dV



      (39) 

Собирая в уравнениях (29), (30),  (35)–(37) члены при одинаковых 

степенях от малого параметра, получаем следующие локальные задачи 

 

  

       

           

     

     

  

(0)

|

(0) { 1}(0) (0)

(0) (1) (1)

| |

(0) (1)

(1) (0)

(1)

0,

,

2 2 ,

:  0,  0,

0,  0,

0

n m

ij j

n m n m n m

ij ijkl kl

n m n m n m n m

kl kl k l l k

n m n m

N ij j i

n m n m

k ij

n m

k

C

u u

n u

u

u



 



 

 







 

  

      

       
   

         
      

 

  (40) 

— локальную задачу нулевого приближения, где обозначены осред-

ненные приращения деформаций 

         (0) (0)

, .2 ,
n m n m n m

kl k l l ku u      (41) 
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а также 

 

       

        

     

     

  

( ){ }( ) ( ){ }( 1) ( ){ }( )

, |

( ) { 1}( ') ( ')

' 0

( ) ( ) ( )

, .

( 1) ( 1)

| |

( ) ( 1)

( 1

,

,

2

,

:  0,  0,

n m s n m s n m s

ij j ij j i

s
n m s n m s s n m s

ij ijkl kl

s

n m s n m s n m s

kl k l l k

n m s n m s

k l l k

n m s n m s

N ij j i

n m s

k

h

C

u u

u u

n u

u



 

 







 



 





   

  

     

  

       
   





  

  

) ( )

( 1)

0,  0,

0,  1, 2,3,....

n m s

ij

n m s

ku s

 




        
      

  

  (42) 

— локальную задачу циклического пластического деформирования в 

s  ом приближении. 

В формулировки локальных задач входят условия нормировки:  

 
  ( 1)

0.
n m s

ku


      

Решение задачи (40) ищется относительно функций 
  (1)n m

iu , а 

задачи (42) — относительно функций 
  ( 1)n m s

iu


 . 

Осредненные уравнения. Из условия существования единствен-

ного решения локальных задач (42) на ЯП находим выражения для 

функций  
( ){ }( )n m s

ih  

 
( ){ }( ) ( ){ }( ) ( ){ }( 1)

, | 0,1,2,3,. ., .n m s n m s n m s

i ij j ij jh s         (43) 

Откуда, в силу периодичности функций   ( )n m s

ij , получаем 

 ( ){ }( ) ( ){ }( ) ( ){ }( ) ( ){ }( )

, ,
, .n m s n m s n m s n m s

i ij i ijj j
h h       (44) 

Если подставить выражения (44) в уравнение (34), получаем 

 ( ){ }( )

,
0

0n n m s

ij j
s






 æ   (45) 

— осредненные уравнения равновесия для циклического деформиро-

вания КМ. 

Введем обозначение для осредненных напряжений 

 ( ){ } ( ){ }( )

0

.n m n n m s

ij ij

s

 




  æ   (46) 
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Тогда уравнения (45) можно записать следующим образом: 

 ( ){ }

, 0.n m

ij j    (47) 

Удерживая в формуле (46) только главные члены, получаем 

 
( ){ } ( ){ }(0) .n m n m

ij ij      (48) 

Подставим в эту формулу соотношения (31) 

     { 1}(0) (0)( ){ } ,
n m n mn m

ij ijkl klC 


     (49) 

а приращения деформаций 
  (0)n m

kl выразим по соотношениям Коши 

из системы (40) 

            (0) (1) (1)

| |2 2
n m n m n m n m

kl kl k l l ku u        (50) 

и подставим в соотношение (49), тогда получим осредненные опреде-

ляющие соотношения КМ 

          { 1}(0) { 1}(0) (1)( ){ }

| .
n m n m n m n mn m

ij ijkl kl ijkl k lC C u 
 

       (51) 

Поскольку задача (40) на ячейке периодичности является линей-

ной, то ее решение линейно зависит от входных данных — функций 
  n m

kl . Тогда ее решение относительно приращений перемещений 

  (1)
 

n m

ku можно представить в символическом виде: 

 
     (1) ( ){ 1}  ( ) ,
n m n mn m

i ikl s klu N       (52) 

где 
( ){ 1}( )n m

ikl sN 
 —  некоторые функции локальных координат, опреде-

ляемые из решения задачи (40) на ЯП.  Тогда, подставляя соотношения 

(52) в (51), получаем эффективные упруго–пластические определяю-

щие соотношения композита: 

   ( ){ } ( ){ 1} ,
n mn m n m

ij ijkl klC      (53) 

где: 

 
( ){ 1} ( ){ 1}(0) ( ){ 1}(0) ( ){ 1}

|

n m n m n m n m

ijkl ijkl ijmp mpk lC C C N       (54) 

— эффективные приведенные модули упругости композита для каж-

дого n го цикла нагружения. 

К системе (47), (53) присоединяются осредненные соотношения 

Коши 

         (0) (0)

, .2 .
n m n m n m

kl k l l ku u      (55) 
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И осредненные граничные условия для всей области КМ:  

              (0)
,   .

u

n m n n m no o

ij j i m i i mn S t u u t


  
 

        (56) 

В результате получили постановку осредненной задачи цикличе-

ского пластического деформирования КМ для N  го цикла нагруже-

ния – разгрузки. Решением этой задачи являются приращения переме-

щений 
  (0)n m

ku . 

Решение локальной задачи нулевого приближения. Задача (40) 

содержит 6 функций 
  n m

kl  — входных данных. Будем искать реше-

ние задачи (40) в виде сумм по этим функциям: 

 
  

3
(1) ( ){ }

( )

,

,
n m n m

k k pq

p q

u u     (57) 

где 
( ){ }

( )

n m

k pqu — имеют следующий вид: 

    ( ){ } ( ){ }

( ) ( )

1
.

2

n m n m

i pq pq ip q iq p i pq su U             (58) 

Подставляя выражения (57), (58) в систему (40), получим, что при-

ращения деформаций 
  (0)n m

kl и   (0)n m

ij  также можно представить 

в виде сумм 

 
     

3 3
(0) (0)( ){ ) ( ){ )

( ) ( )

, 1 , 1

, .
n m n mn m n m

kl kl pq kl kl pq

p q p q

   
 

         (59) 

Для функции ( )i pqU из (40) получаем следующую задачу pqL  на 1/8 

ЯП 

 

( ){ )

( )/

( ){ ) ( ){ 1}(0) ( ){ )

( ) ( )

( ){ )

( ) ( )| ( )|

( ){ )

( ) ( )

0,

,

2 ,

:  0,  0.

n m

ij pq j

n m n m n m

ij pq ijkl kl pq

n m

kl pq k pq l l pq k

n m

N ij pq j l pq

C

U U

n U



 







 

  

  

        

  (60) 

Граничные условия на поверхностях 1/8 ЯП имеют следующий 

вид. 

Для задач pqL  на гранях ' { 0,5}p p    1/8 ЯП задаются:   

 
( ){ }

( ) ( )(1/ 2) , 0, 1,2,3, , 1,2,3.n m

p pp pp ip ppU S p i p i        (61) 

На гранях { 0}p p    задаются аналогичные нулевые условия 
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 ( ) ( )0, 0.p pp ip ppU S    (62) 

На остальных гранях 1/8 ЯП также задаются нулевые условия вида 

скольжения. Здесь обозначены: 
( ){ )

( ) ( )
k

n m

ik pq ik pqS 


  , i k  — касатель-

ные компоненты приращений вектора напряжений ( ){ )

( )

n m

ik pq kn  на               

гранях k
. 

Для задач pqL ( p q ) на гранях 'p  и p  заданы следующие гра-

ничные условия:  

 
( ) ( ) ( )0,  0,  0,

1,2,3,  ,  , , 1,2,3.

i pq pp pq q pqU S U

p i q p i i p q

  

    
  (63) 

На гранях 'q заданы условия 

 ( ){ }

( ) ( ) ( )

1
, 0, 0.

4

n m

q pq pq qq pq i pqU S U      (64) 

На остальных гранях заданы условия, аналогичные (63).  

Вывод граничных условий (61)–(64) осуществляется методом, 

предложенным в работах [12, 21]. 

Граничные условия (61)–(64) позволяют продолжить решение во 

всю ЯП таким образом, что будет удовлетворяться условие норми-

ровки   ( 1)
0

n m s

ku


  .  

Расчёт эффективных упруго–пластических характеристик 

КМ. Задачи pqL (60)–(64) являются линейными и зависят от прираще-

ний средних деформаций 
  n m

kl . Тогда можно ввести следующие 

тензоры 

 
  

  

( ){ 1)

( )1

1
,

n m

ij pqn m

ijkl n m

pq

C














  (65) 

где обозначены средние значения приращений напряжений в ЯП 

 
( ){ ) ( ){ )

( ) ( ) .n m n m

ij pq ij pq

V

dV



      (66) 

Выражая из (65) средние напряжения и подставляя их в осреднен-

ные соотношения (59), получаем 

 
  

3 3
(0) ( ){ ) ( ){ } ( ){ }

( )

, 1 , 1

.
n m n m n m n m

ij ij pq ijpq pq

p q p q

C  
 

        (67) 
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Подставляя (67) в (48), получаем эффективные определяющие со-

отношения для КМ 

      1( ){ } .
n m n mn m

ij ijkl klC 


     (68) 

Таким образом, формула (65) дает выражение для тензора приве-

денных эффективных модулей упругости композита. 

Разработанный алгоритм может быть применен для численного мо-

делирования композита при различных вариантах нагружения, т.е. при 

различных комбинациях ненулевых компонент тензора ( ){ }n m

pq . Для 

каждого такого процесса нагружения вычисляется тензор   1n m

ijklC


по 

формуле (65), определяются средние приращения напряжений 
( ){ },n m

ij  

и строятся диаграммы циклического деформирования деформирования 
( ){ } ( ){ } ( ){ }( )n m n m n m

ij ij pq      , описываемые соотношением (68). 

Результаты численного моделирования. Для численного реше-

ния локальных задач pqL  использовался метод конечного элемента 

[12, 21], который был реализован как составная часть программного 

комплекса SMCM, разработанного в Научно-образовательном центре 

«Суперкомпьютерное инженерное моделирование и разработка про-

граммных комплексов» (НОЦ «Симплекс») МГТУ им. Н.Э. Баумана 

[28, 29]. Комплекс SMCM позволяет проводить полный цикл конечно-

элементного моделирования : от создания типовых 3D геометрий мик-

роструктур ЯП композитов, построения КЭ сеток, до непосредствен-

ного решения задач pqL  и визуализации результатов расчетов. 

Численные расчеты проводились для дисперсно-армированных 

композиционных материалов (ДАКМ), 1/8  ЯП которых изображена на 

рис. 1. Матрица была упруго-пластической с характеристиками, соот-

ветствующими  алюминиевому сплаву типа Д16Т [20]: модуль Юнга 

70E  ГПа, коэффициент Пуассона 0,35  ,  модуль сдвига                

30G  ГПа, 
0 0,96  ,  0,0045s  , 2,34b  , 

0 2,02  , 0,03  . 

В качестве наполнителя рассматривались частицы керамики SiС с 

характеристиками: модуль Юнга 350E   ГПа, коэффициент Пуассона 

0,2  . Наполнитель считался упругим. 

На рис. 1 показан график изменения функции нагружения  t  

для случая 4-х циклов нагружения – разгрузки. На рис. 2 показана            

единая диаграмма циклического деформирования  11 11 11( )F   

ДАКМ Аl/SiС для случая 4-х циклов одноосного нагружения: 

нагрузки. Единая диаграмма циклического деформирования                           

построена с помощью представлений типа (7), примененных для                   

средних напряжений и деформаций  
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           

           

1
1 1

0

1
1 1

0

1 1 ,

1 1 ,

n
n nn n

ij ij ij n

n

n
n nn n

ij ij ij n

n

t t

t t

  

  


  






  





     

     




  

где приращения средних напряжений и деформаций связаны на n ом 

цикле определяющими соотношениями 

 ( ) ( )

11 11 11( ),n nF      

которые восстанавливаются с помощью итерационных определяющих 

соотношений (68) композита. 

На рис. 3 показана единая диаграмма циклического деформирова-

ния 13 13 13( )F   ДАКМ Аl/SiС для случая 4-х циклов одноосного 

сдвигового деформирования. 

 

 
Рис. 1. Окно ПК SMCM, показывающее график изменения функции 

 нагружения  t  для случая 4-х циклов нагружения – разгрузки (время t  (с)) 

 

 
Рис. 2. Окно ПК SMCM, показывающее единую диаграмму циклического  

деформирования  11 11 11( )F   ДАКМ Аl/SiС для случая 4-х циклов  

одноосного растяжения – сжатия:  (циклы нагружения 1n  , 3n   

и циклы разгрузки 2, 4n  ) (напряжения 
( )

11

n , ГПа) 
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Рис. 3. Окно ПК SMCM, показывающее единую диаграмму циклического 

 деформирования  13 13 13( )F   ДАКМ Аl/SiС для случая 4-х циклов 

 сдвигового деформирования:  (циклы нагружения 1n  , 3n   

и циклы разгрузки 2, 4n  ) (напряжения 
( )

13

n , ГПа) 

 

На рисунках 4 и 5  показаны результаты решения задач pqL —при 

активном нагружении в 1–м цикле нагружения при максимальном зна-

чении напряжений и в 15–м цикле нагружения (для случаев 1n   и

15n   ). С увеличением числа циклов происходит возрастание значе-

ний полей микронапряжений ( )

11(11)

n , характер распределения самих 

напряжений при этом не меняется. Максимальные значения микрона-

пряжений 
( )

11(11)

n  возникают в матрице, в наиболее узкой зоне между 

керамическими частицами. 
 

 
 

 

а 
 

б 

Рис. 4. Поля микронапряжений  
( )

11(11)

n  (ГПа) в ЯП при циклическом  

деформировании на 1–м (а) и 15–м цикле (б) нагружения ДАКМ Аl/SiС 

 

Аналогичная картина изменения полей микронапряжений 
( )

13(13)

n  

наблюдается и при циклическом сдвиге (рис. 5). 
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а 
 

б 

Рис. 5. Поля микронапряжений  
( )

13(13)

n  (ГПа) в ЯП при циклическом  

деформировании на 1–м (а) и 15–м цикле (б) нагружения ДАКМ Аl/SiС 

 

Заключение. Предложена теория расчета упруго–пластического 

деформирования композиционных материалов при циклическом 

нагружении, основанная на применении метода асимптотического 

осреднения периодических структур и использовании деформацион-

ной теории пластичности А.А. Ильюшина – В.В. Москвитина с моде-

лью Мазинга для циклического изменения функции пластичности. 

Предложен алгоритм построения эффективных упруго–пластиче-

ских соотношений композитов при циклических нагружениях, вклю-

чая циклы нагружения и разгрузки. Алгоритм основан на конечно-эле-

ментном решении локальных задач на ЯП, для этой цели используется 

ПК SMCM, разработанный в Научно-образовательном центре «Супер-

компьютерное инженерное моделирование и разработка программных 

комплексов» (НОЦ «Симплекс») МГТУ им. Н.Э. Баумана 

Приведены численные примеры расчетов циклических диаграмм 

деформирования для дисперсно–армированных композитов на основе 

матрицы из алюминиевого сплава типа Д16Т и керамических частиц 

SiC. Тестовые расчеты показали, что разработанная модель и числен-

ный алгоритм позволяют успешно проводить моделирование эффек-

тивных упруго - пластических диаграмм деформирования композитов 

при большом числе циклов нагружения, с учетом этапов нагружения 

и разгрузки, что позволяет использовать созданный программный мо-

дуль ПК SMCM для прогнозирования упруго–пластических свойств 

синтезируемых композитов. 
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Modeling of effective 

elastic–plastic properties of composites 

under cyclic loading  

 Yu.I. Dimitrienko, S.V. Sborschikov, Yu.V. Yurin 

Bauman Moscow State Technical University, Moscow, 105005, Russia 

 

A method is proposed for calculating the effective elastic–plastic properties of composites 

under cyclic loading. The technique is based on the application of the method of asymptotic 

averaging of periodic structures for the case of materials with elastic-plastic properties 

under cyclic loading. A model of the deformation theory of plasticity by A.A. Il’yushin – 

V.V. Moskvitin under cyclic loading using the Masing model for changing the plasticity 

function under cyclic deformation. Local problems of the theory of plasticity for the perio-

dicity cell of a composite material, as well as averaged problems of the theory of aniso-

tropic plasticity under cyclic loading are formulated. A software module has been devel-

oped for the finite element solution of local problems on the periodicity cell. The software 

of the SMCM complex developed at the Scientific and Educational Center "Supercomputer 

Engineering Modeling and Development of Software Systems" of the Bauman Moscow 

State Technical University was used. The SMCM complex is designed for finite element 

modeling of the properties of composite materials. Numerical calculations of the elastic-

plastic properties of dispersed-reinforced composites based on an aluminum alloy and SiC 

ceramic particles have been carried out. Calculations have shown that the developed tech-

nique can be used to predict cyclic deformation diagrams of elastic-plastic composites in 

a wide range of loading conditions, as well as to design new composite materials with 

specified properties. 

 

Keywords: composites, plasticity, cyclic loading, deformation theory of plasticity, dis-

persed-reinforced composites, asymptotic averaging method, finite element method, nu-

merical simulation 
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