539.3 Coupled modeling of high-speed aerothermodynamics and internal heat and mass transfer in composite aerospace structures

Dimitrienko Y. I. (Bauman Moscow State Technical University), Koryakov M. N. (Bauman Moscow State Technical University), Yurin Y. V. (Bauman Moscow State Technical University), Zakharov A. A. (Bauman Moscow State Technical University), Sborschikov S. V. (Bauman Moscow State Technical University), Bogdanov I. O. (Bauman Moscow State Technical University)


doi: 10.18698/2309-3684-2021-3-4261

A coupled problem of high-speed aerothermodynamics and internal heat and mass transfer in heat-shielding structures of reentry spacecraft made of ablative polymer composite materials is considered. To determine the heat fluxes in the shock layer of the reentry vehicle, the chemical composition of the atmosphere is taken into account. The mathematical formulation of the conjugate problem is formulated and an algorithm for the numerical solution is proposed. An example of the numerical solution of the problem for the reentry spacecraft Stardust is presented. It is shown that taking into account chemical reactions in the gas flow around the surface of the reentry vehicle is essential for the correct determination of the gas temperature in the boundary layer. It is also shown that the developed numerical method for solving the problem makes it possible to determine the parameters of phase transformations in a heat-shielding structure depending on the heating time, in particular, it allows calculating the pore pressure field of gaseous products of thermal decomposition of a polymer composite, which, under certain conditions, can lead to material destruction.

Riccio A., Raimondo F., Sellitto A., Carandente V., Scigliano R., Tescione D. Optimum design of ablative thermal protection systems for atmospheric entry vehicle. Applied Thermal Engineering, 2017, no.119, pp.541–552.
Ayasoufi A., Rahmani R.K., Cheng G., Koomullil R., Neroorkar K. Numerical simulation of ablation for reentry vehicles. Collection of Technical Papers — 9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference Proceedings, vol.1, pp.14–25.
Carandente V., Savino R., Iacovazzo M., Boffa C. Aerothermal analysis of a sample-return reentry capsule. Fluid Dynamics and Materials Processing, 2013, vol.9, iss.4, pp.461–484.
Beerman A.F., Lewis M.J., Starkey R.P., Cybyk B.Z. Significance of nonequilibrium surface interactions in Stardust return capsule ablation modeling. Journal of Thermophysics and Heat Transfer, 2009, vol.23, no.3, pp.425–432.
Wang H., Liu L., Zhang W. Fluid-thermal-structure coupled analysis of radome for hypersonic flight vehicle. Advances in Engineering Research, 2017, vol.141, pp.1272–1277.
Weng H., Martin A. Numerical investigation on charring ablator geometric effects: study of stardust sample return capsule heat shield.53rd AIAA Aerospace Sciences Meeting, 2015, art.no. AIAA 2015-0211. DOI: 10.2514/6.2015-0211
Alifanov O.M., Ivankov A.A., Netelev A.V., Finchenko V.S. Study on thermal shields characteristics of aeroelastic braking devises of reentry vehicles descent into the planets atmosphere. Trudy MAI, 2013, no.71, p.18.
Dimitrienko Yu.I. Thermomechanics of composites structures under high temperatures. Springer, 2015, 367 p.
Dimitrienko Yu.I. Internal heat-mass transfer and stresses in thin-walled structures of ablating materials. International Journal of Heat and Mass Transfer, 1997, vol.40, no.7, pp.1701–1711.
Dimitrienko Y.I., Dimitrienko I.D. Effect of thermomechanical erosion on heterogeneous combustion of composite materials in high-speed flows. Combustion and Flame, 2000, vol.122, iss.3, pp.211–226.
Dimitrienko Yu.I. A structural thermo-mechanical model of textile composite materials at high temperatures. Composites Science and Technology, 1999, vol.59, iss.7, pp.1041–1053.
Dimitrienko Yu.I. Thermomechanical behaviour of composite materials and structures under high temperatures: 2. Structures. Composites Part A: Applied Science and Manufacturing, 1997, vol.28, iss.5, pp.463–471.
Dimitrienko Y.I., Koryakov M.N., Zakharov A.A., Stroganov A.S. Computational modeling of conjugated gasdynamic and thermomechanical processes in composite structures of high speed aircraft. Маthematical Modeling and Coтputational Methods, 2014, no.3, pp.3–24.
Dimitrienko Y.I., Koryakov M.N., Zakharov A.A. Application of RKDG method for computational solution of three-dimensional gasdynamic equations with non-structured grids. Mathematical Modeling and Computational Methods, 2015, no.4, pp.75–91.
Dimitrienko Y.I., Koryakov M.N., Zakharov A.A. Development of computational methods for numerical simulation of conjugated problems of gas dynamics and thermomechanics in composite structures of promising high-speed aircrafts. Izvestia of Samara Scientific Center of the Russian Academy of Sciences, 2016, vol.18, no.2–3, pp.891–895.
Dimitrienko Y.I., Zakharov A.A., Koryakov M.N. Coupled problems of high-speed aerodynamics and thermomechanics of heat-shielding structures. Journal of Physics: Conference Series, 2018, vol.1141, art.no.012094. DOI: 10.1088/1742-6596/1141/1/012094
Dimitrienko Yu.I., Koryakov M.N., Yurin Yu.V., Zakharov A.A. Finite-element modeling of thermal stresses in composite structures with thermal decomposition under aerodynamic heating. Mathematical Modeling and Computational Methods, 2019, no.2, pp.15–34.
Dimitrienko Y.I., Zakharov A.A., Koryakov M.N. Computational modeling of the conjugated thermomechanical and aerogasdynamics processes for composite structures of high speed vehicles. IOP Conference Series: Materials Science and Engineering, 2019, vol.683, art.no.012007. DOI: 10.1088/1757-899X/683/1/012007
Anderson J.D. Hypersonic and high-temperature gas dynamics.2nd edition. American Institute of Aeronautics and Astronautics, Reston, Virginia, 2006, 232 p.
Krasnov N.F. Aerodinamika. T.1. Osnovy teorii. Aerodinamika profilya i kryla Aerodynamics. Vol.1. Fundamentals of theory. Airfoil and wing aerodynamics]. Moscow, Vysshaya shkola Publ., 1980, 496 p.
Krasnov N.F. Aerodinamika. T.2. Metody aerodinamicheskogo rascheta [Aerodynamics. Vol. Methods of aerodynamic calculation]. Moscow, Vysshaya shkola Publ., 1980, 416 p.
Dimitrienko Yu.I., Kotenev V.P., Zakharov A.A. Metod lentochnykh adaptivnykh setok dlya chislennogo modelirovaniya v gazovoy dinamike [Adaptive tape grid method for computational simulation in gas dynamics]. Moscow, Fizmatlit Publ., 2011, 280 p.
Dimitrienko Yu.I. Mekhanika sploshnoj sredy. T. 1. Tenzornyj analiz [Continuum Mechanics. Vol.1. Tensor analysis]. Moscow, BMSTU Publ., 2011, 367 p.
Gilmanov A.N. Metody adaptivnyh setok v zadachah gazovoj dinamiki [Methods of adaptive grids in problems of gas dynamics]. Moscow, Fizmatlit Publ., 2000, 248 p.
Kulikovsky A.G., Pogorelov N.V., Semenov A.Yu. Matematicheskie voprosy chislennogo resheniya giperbolicheskih sistem uravnenij [Mathematical problems of numerical solution of hyperbolic systems of equations]. Moscow, Fizmatlit Publ., 2012, 656 p.

мДимитриенко Ю.И., Коряков М.Н., Юрин Ю.В., Захаров А.А., Сборщиков С.В., Богданов И.О. Сопряженное моделирование высокоскоростной аэротермодинамики и внутреннего тепломассопереноса в композитных аэрокосмических конструкциях. Математическое моделирование и численные методы, 2021, № 3, с. 42–61.

Download article

Количество скачиваний: 189