and Computational Methods

doi: 10.18698/2309-3684-2021-3-4261

A coupled problem of high-speed aerothermodynamics and internal heat and mass transfer in heat-shielding structures of reentry spacecraft made of ablative polymer composite materials is considered. To determine the heat fluxes in the shock layer of the reentry vehicle, the chemical composition of the atmosphere is taken into account. The mathematical formulation of the conjugate problem is formulated and an algorithm for the numerical solution is proposed. An example of the numerical solution of the problem for the reentry spacecraft Stardust is presented. It is shown that taking into account chemical reactions in the gas flow around the surface of the reentry vehicle is essential for the correct determination of the gas temperature in the boundary layer. It is also shown that the developed numerical method for solving the problem makes it possible to determine the parameters of phase transformations in a heat-shielding structure depending on the heating time, in particular, it allows calculating the pore pressure field of gaseous products of thermal decomposition of a polymer composite, which, under certain conditions, can lead to material destruction.

мДимитриенко Ю.И., Коряков М.Н., Юрин Ю.В., Захаров А.А., Сборщиков С.В., Богданов И.О. Сопряженное моделирование высокоскоростной аэротермодинамики и внутреннего тепломассопереноса в композитных аэрокосмических конструкциях. Математическое моделирование и численные методы, 2021, № 3, с. 42–61.

doi: 10.18698/2309-3684-2020-1-327

The problem of multilevel model development for calculating of an elastic property of polymer composite materials with a complex reinforcement structure at high temperatures is considered. It is assumed that thermal destruction processes take place in the matrix and fibers at high temperatures. In order to take into account the change in the elastic properties of the composite depending on the temperature and heating time, a 3-level structural model of the composite is proposed. At the lower level mono-fibers and a matrix consisting of 4 phases, the ratio between which changes when heated are considered. At this level, the analytical relations proposed earlier in the works of Yu.I. Dimitrienko. At the next level of the model, a unidirectional composite is considered, consisting of bundles of monofilaments and a matrix. To calculate elastic properties at this level, the method of asymptotic averaging is used, and a finite element algorithm for solving local problems of the theory of thermoelasticity arising in this method. At the 3rd structural level of the model, composites with complex reinforcement structures, in particular, fabric composites, are considered. The method of asymptotic averaging is also used to calculate the elastic properties of the composite at this level. For the numerical calculation of the elastic characteristics of polymer composites at high temperatures, specialized software has been developed that operates under the control of the SMCM software package created at the Scientific and Educational Center for Supercomputer Engineering Modeling and Development of Software Systems of the Bauman Moscow State Technical University. The article provides examples of the application of the developed multilevel model and software for textile composites based on an epoxy matrix and glass fibers. The values of all components of the tensor of the elastic moduli of the composite are calculated, which vary depending on the heating program of the composite. The microstress fields in the composite are obtained. A comparison is made of the fields of microstresses and effective elastic constants at normal temperatures, with similar values obtained using the ANSYS software package, which has been modified to enable the calculation of effective elastic constants in accordance with the proposed model. A very good agreement was obtained between the calculation results, both of the effective constants and of the microstresses fields, which allows us to speak of the high accuracy of the developed software.

Димитриенко Ю.И., Юрин Ю.В., Сборщиков С.В., Богданов И.О., Яхновский А.Д., Баймурзин Р.Р. Конечно-элементное моделирование упругих свойств тканевых полимерных композитов при высоких температурах. Математическое моделирование и численные методы. 2020. № 1. с. 3–27

doi: 10.18698/2309-3684-2023-3-317

A numerical algorithm for solving the problem of natural vibrations for thin-walled shell structures based on the finite element method is proposed. A software module has been developed as part of the SMCM software package, which implements the proposed numerical algorithm. A test problem was solved for natural vibrations of a cylindrical shell structural element. A comparative analysis of eigenfrequencies and eigenmodes was carried out with similar results obtained using a two-dimensional shell solution in the ANSYS software package, as well as with the results of solving a three-dimensional problem for natural vibrations in the ANSYS software package.

Димитриенко Ю.И., Юрин Ю.В., Богданов И.О., Маремшаова А.А. Конечно-элементное моделирование собственных колебаний оболочечных конструкций. Математическое моделирование и численные методы, 2023, № 3, с. 3–17.

doi: 10.18698/2309-3684-2024-1-3854

The problem of modeling for buckling analysis of the composite structures due to nonstationary thermal effects on them, taking into account the temperature dependence of the properties of the composite components, is considered. Systems of equations are formulated for calculating the basic and varied states of the structure. A classification of buckling analysis problems is proposed. The application of the finite element method to determine the critical temperature and the corresponding buckling mode of a structure is described. A local generalized eigenvalue problem was formulated and the proposed model was verified using the SMCM software package developed at the Simplex Research Center of Bauman Moscow State Technical University, as well as using ANSYS. It is shown that the results of calculating the eigenforms and eigenvalues in the test problem coincide quite well.

Димитриенко Ю.И., Богданов И.О., Юрин Ю.В., Маремшаова А.А., Анохин Д. Конечно-элементное моделирование нестационарной термоустойчивости композитных конструкций. Математическое моделирование и численные методы, 2024, № 1, с. 38–54.

doi: 10.18698/2309-3684-2017-2-327

A mathematical model for the multiscale process of filtration of weakly compressible liquids and gases in periodic porous media is proposed with reference to the process of composite material production based on the RTM method. Using the method of asymptotic averaging made it possible to formulate the so-called local filtration problems for a single pore and the global problem of unsteady filtration of weakly compressible liquids. Two models of a weakly compressible fluid are considered: classical and generalized. The classical model is based on the Musket’s equation of the state, which requires initial constant values for fluid pressure and density to be preset. The generalized model is based on the same equation, but requires presetting only the initial fluid density, using the unknown hydrostatic pressure instead of the initial constant liquid pressure. The results of simulation of the impregnation process of a of filler material sample by a binder are presented using the two models of a weakly compressible liquid.

Dimitrienko Yu. I.Bogdanov I.O. Multiscale modeling of liquid binder filtration processes in composite structures manufactured by RTM Маthematical Modeling and Coтputational Methods, 2017, №2 (14), pp. 3-27