539.3 Finite element modeling of non-stationary thermal buckling of composite structures

Dimitrienko Y. I. (Bauman Moscow State Technical University), Bogdanov I. O. (Bauman Moscow State Technical University), Yurin Y. V. (Bauman Moscow State Technical University), Maremshaova A. A. (Bauman Moscow State Technical University), Anokhin D. S. (Bauman Moscow State Technical University)

PROBLEM OF BUCKLING THEORY, THERMAL BUCKLING, FINITE ELEMENT METHOD, CRITICAL TEMPERATURE, EIGENFORM


doi: 10.18698/2309-3684-2024-1-3854


The problem of modeling for buckling analysis of the composite structures due to nonstationary thermal effects on them, taking into account the temperature dependence of the properties of the composite components, is considered. Systems of equations are formulated for calculating the basic and varied states of the structure. A classification of buckling analysis problems is proposed. The application of the finite element method to determine the critical temperature and the corresponding buckling mode of a structure is described. A local generalized eigenvalue problem was formulated and the proposed model was verified using the SMCM software package developed at the Simplex Research Center of Bauman Moscow State Technical University, as well as using ANSYS. It is shown that the results of calculating the eigenforms and eigenvalues in the test problem coincide quite well.


Bolotin V.V. Nekonservativnye zadachi teorii uprugoj ustojchivosti [Nonconservative problems of the theory of elastic stability]. Мoscow, Gostekhteoretizdat Publ., 1961, 339 p.
Timoshenko S.P., Gere J.M. Theory of elastic stability. New York/Toronto/London: McGraw-Hill, 1961, 356 p.
Vol’mir A.S. Ustoychivost’ deformiruemykh system [Stability of deformable systems]. Moscow, Nauka Publ., 1967, 964 p.
Grigolyuk EH.,I,. Chulkov P.P. Ustojchivost i kolebaniya trekhslojnyh obolochek [Stability and fluctuations of three-layer covers]. Moscow, Mashinostroenie Publ., 1973, 215 p.
Alfutov N.A. Osnovy rascheta na ustoychivost' uprugikh system [Fundamentals of stability calculations for elastic systems]. Moscow, Mashinostroyenie Publ., 1978, 312 p.
Panovko Y.A., Gubanova I.I. Ustojchivost i kolebaniya uprugih sistem. Sovremennye koncepcii oshibki i paradoksy [Stability and fluctuations of elastic systems: Modern concepts, mistakes and paradoxes]. Moscow, Nauka Publ., 1979, 384 p.
Vasil’ev V.V. Mekhanika kompozitsionnykh materialov [Mechanics of composite materials]. Moscow, Mashinostroyeniye Publ., 1984, 272 p.
Bazant Z.P., Cedolin L. Stability of structures. Oxford, Oxford University Press, 1990, 316 p.
Van’ko V.I. Ocherki po teorii ustojchivosti ehlementov konstrukcij [Sketches according to the theory of stability of elements of designs.]. Moscow, BMSTU Publ., 2014, 220 p.
Solomonov YU.S., Georgievskij V.P, Nedbaj A.YA., Andryushin V.A. Prikladnye zadachi mekhaniki kompozitnyh cilindricheskih obolochek [Applied problems of mechanics of composite cylindrical covers]. Moscow, Fizmatlit Publ., 2014, 408 p.
Guz’ A.N. Osnovy trekhmernoj teorii ustojchivosti deformiruemyh tel [Bases of the three-dimensional theory of stability of deformable bodies]. Kiev, Vishcha shkola Publ., 1986, 512 p.
Kohnke P. ANSYS. Theory references. ANSYS, Inc., 1994, 1286 p.
Abaqus. Theories_Manual. www.cadfamily.com
Dimitrienko Yu.I. Generalized three-dimensional theory of elastic bodies stability. Part 3. theory of shell stability. Herald of the Bauman Moscow State Technical University. Natural Science, 2014, iss. 2, pp. 77–89.
Димитриенко Ю.И. Generalized three-dimensional theory of elastic bodies stability. Part 2. Small deformations. Herald of the Bauman Moscow State Technical University. Natural Science, 2014, iss. 1, pp.17-26.
Dimitrienko Yu.I. Mekhanika sploshnoy sredy. Tom 4. Osnovy mekhaniki tverdogo tela [Continuum Mechanics. Vol. 4. Fundamentals of solid mechanics]. Moscow, BMSTU Publ., 2013, 624 p.
Dimitrienko Yu. I., Bogdanov I. O. Finite element method for threedimensional problems of elastic structures stability. Herald of the Bauman Moscow State Technical University. Natural Science, 2016, iss. 6, pp.73-92.
Dimitrienko Yu. I., Bogdanov I. O. Numerical simulation of the stability of three-dimensional elastic composite structures based on the finite element method. IOP Conference Series: Material Science and Engeneering, 2020, vol. 934, no. 012011. DOI:10.1088/1757-899X/934/1/012011
Dimitrienko Yu. I. Mekhanika sploshnoy sredy. Tom 4. Tensorniy Analiz [Continuum Mechanics. Vol. 4. Tensor Analysis]. Moscow, BMSTU Publ., 2011, 463 p.
Dimitrienko Y. I, Yurin Y. V., S V Sborschikov , Yakhnovskiy A. D., Baymurzin R. R. Finite element modeling of elastic properties of textile polymer composites at high temperatures. Mathematical Modeling and Computational Methods, 2020, no. 3, pp. 22-46.
Zienkiewicz O.C., Taylor R.L. The Finite Element Method for Solid and Structural Mechanics. Elsevier, 1967, 648 p.
Segerlind L. Applied Finite Element Analysis. J.WILLEY and SONS. 1984, 392 p.
Certificate no. 22022682614 Programma Stability_3D_Manipula dlya konechno-elementnogo rascheta ustojchivosti konstrukcij iz polimernyh kompozicionnyh materialov, s uchetom krivolinejnoj anizotropii [MultiScale_SMCM program for multiscale modeling of the stress-strain state of structures made of composite materials, based on the method of multilevel asymptotic homogenization and finite element solution of threedimensional problems of elasticity theory] / Yu.I. Dimitrienko, S.V. Sborshchikov, Yu.V. Yurin, I O Bogdanov; applicant and copyright holder: BMSTU — no. 22022682614; application 23.11.2022.
http://thermalinfo.ru/svojstva-materialov/keramika-i-steklo/svojstvakarbida-kremniya-sic


Димитриенко Ю.И., Богданов И.О., Юрин Ю.В., Маремшаова А.А., Анохин Д. Конечно-элементное моделирование нестационарной термоустойчивости композитных конструкций. Математическое моделирование и численные методы, 2024, № 1, с. 38–54.



Download article

Количество скачиваний: 35