doi: 10.18698/2309-3684-2023-3-317
A numerical algorithm for solving the problem of natural vibrations for thin-walled shell structures based on the finite element method is proposed. A software module has been developed as part of the SMCM software package, which implements the proposed numerical algorithm. A test problem was solved for natural vibrations of a cylindrical shell structural element. A comparative analysis of eigenfrequencies and eigenmodes was carried out with similar results obtained using a two-dimensional shell solution in the ANSYS software package, as well as with the results of solving a three-dimensional problem for natural vibrations in the ANSYS software package.
Vasiliev V.V. Mekhanika konstrukcii iz kompozicionnyh materialov [Mechanics of structures made of composite materials]. Moscow, Mashinostroenie Publ., 1988, 271 p.
Grigolyuk E.I., Kulikov G.M. Generalized model of the mechanics of thin-walled structures made of composite materials. Mechanics of Composite Materials, 1989, vol. 24, iss. 4, pp. 537–543.
Zveryaev E. M, Makarov G. I. A general method for constructing theories of the Timoshenko type. Journal of Applied Mathematics and Mechanics, 2008, vol. 72, no. 2, pp. 308–321.
Alfutov N.A., Zinoviev P.A., Popov B.G. Raschet mnogoslojnyh plastin I obolochek iz kompozicionnyh materialov [Calculation of multilayer plates and shells made of composite materials]. Moscow, Mashinostroenie Publ., 1984, 264 p.
Belkin A.E., Gavryushin S.S. Raschet plastin metodom konechnyh elementov: ucheb. posobie dlya vuzov [Calculation of plates by the finite element method: textbook. manual for universities]. Moscow, BMSTU Publ., 2008, 232 p.
Popov B. G. Raschet mnogoslojnyh konstrukcij variacionno-matrichnymi metodami [Calculation of multilayer structures by variation-matrix methods]. Мoscow, BMSTU Publ., 1993, 294 p.
Dimitrienko Y.I., Yurin Yu.V., Maremshaova A.A. 3D Finite Element Modeling of Stresses in Filament Wound Structures. Journal of Physics: Conference Series, 2021, vol. 1990, iss. 012060, pp. 1-8. DOI:10.1088/1742-6596/1990/1/012060.
Dimitrienko Y. I. Gubareva E.A., Pichugina A.E. Thermal stress modeling in composite shells based on asymptotic theory. Part 1. General shell theory. Маthematical Modeling and Computational Methods, 2020, no. 4, pp. 84–110.
Dimitrienko Y. I. Gubareva E.A., Pichugina A.E. Modeling of the stresses in thin composite cylindrical shells based on the asymptotic theory. Маthematical Modeling and Computational Methods, 2018, no. 3, pp. 114–132.
Dimitrienko Yu.I., Yurin Yu.V. Timoshenko-type asymptotic theory for thin multi-layered plates shells. Маthematical Modeling and Computational Methods, 2018, no. 1, pp. 16–40.
Dimitrienko Yu.I., Dimitrienko I.D. Asymptotic Theory for Vibrations of Composite Plates. Applied Mathematical Sciences, 2016, vol. 10, no 60, pp. 2993 – 3002.
Certificate no. 2018614767 Programma MultiScale_SMCM dlya mnogomasshtabnogo modelirovaniya napryazhenno-deformirovannogo sostoyaniya konstrukcij iz kompozicionnyh materialov, na osnove metoda mnogourovnevoj asimptoticheskoj gomogenizacii i konechno-elementnogo resheniya trekhmernyh zadach teorii uprugosti [MultiScale_SMCM program for multiscale modeling of the stress-strain state of structures made of composite materials, based on the method of multilevel asymptotic homogenization and finite element solution of three-dimensional problems of elasticity theory]: certificate of ofic. registration of computer programs/ Yu.I. Dimitrienko, S.V. Sborshchikov, Yu.V. Yurin; applicant and copyright holder: BMSTU — no. 2018677684; application 21.02.2018; registered in the register of computer programs 17.04.2018 — [1].
Dimitrienko Yu.I. Mekhanika sploshnoy sredy. Tom 4. Osnovy mekhaniki tverdogo tela [Continuum Mechanics. Vol. 4. Fundamentals of solid mechanics]. Moscow, BMSTU Publ., 2013, 624 p.
Dimitrienko Yu.I. Nonlinear Continuum Mechanics and Large Inelastic Deformations. Springer, 2011, 722 p.
Dimitrienko Yu.I. Tensor analysis and Nonlinear Tensor Functions. Kluwer Academic Publishers. Dordrecht/Boston/London, 2002, 680 p.
Segerlind L. Primenenie metoda konechnyh elementov [Application of the finite element method]. Moscow, Mir Publ., 1979, 392 p
Димитриенко Ю.И., Юрин Ю.В., Богданов И.О., Маремшаова А.А. Конечно-элементное моделирование собственных колебаний оболочечных конструкций. Математическое моделирование и численные методы, 2023, № 3, с. 3–17.
Количество скачиваний: 140