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Предложен численный алгоритм решения задачи на собственные колебания для 

тонкостенных оболочечных конструкций, на основе метода конечных элементов. 

Разработан программный модуль в составе программного комплекса SMCM, кото-

рый реализует предложенный численный алгоритм. Было проведено решение те-

стовой задачи для собственных колебаний цилиндрического оболочечного элемента 

конструкции. Проведен сравнительный анализ собственных частот и собственных 

форм с аналогичными результатами, полученными с помощью двумерного оболо-

чечного решения в ПК ANSYS, а также с результатами решения трехмерной задачи 

на собственные колебания в ПК ANSYS. 
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Введение. В настоящее время для расчета инженерных тонкостен-

ных конструкций часто используются методы двумерных теорий пла-

стин и оболочек [1-11], которые позволяют снизить размерность реша-

емой задачи и вместо 3D задачи решать 2D задачи, которые, как пра-

вило, требуют существенно более низких характеристик для применя-

емой вычислительной техники. Однако при решении задач теории тон-

костенных пластин и оболочек дополнительно возникают различные 

сложности, в частности, проблема точности аппроксимации решения 

задачи по толщине оболочки [5], влияние типа конечного элемента на 

решение, а также проблема корректного сопряжения решения в зоне 

стыка различных оболочечных элементов конструкций. В настоящей 

работе предложен численный алгоритм решения задачи на собствен-

ные колебания для оболочечных конструкций. В работе проведено 

сравнение результатов расчетов, полученных на основе оболочечной 

теории в программном комплексе ANSYS и в программном комплексе 

SMCM, разработанном в НОЦ «Симплекс» МГТУ им. Н. Э. Баумана 

[12].  

Математическая постановка 3-мерной задачи о свободных ко-

лебаниях. Рассмотрим задачу о свободных колебаниях конструкции в 

ограниченной области   с липшицевой границей u     

[13,14]: 
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где σ  — тензор напряжений; ε  — тензор малых деформаций; u  — 

вектор перемещений;  4
C x  — переменное симметричное 

положительно-определенное тензорное поле модулей упругости 

(четвертого ранга);   — набла–оператор [15]; n  — вектор нормали к 

области;   — плотность;   — частота колебаний.  

Для конечно-элементного решения задачи (1) рассмотрим слабое 

решения этой задачи. Пусть  
3

1Y H     и 

    : 0T TV Y Y Tr
 

  w w , 
e Yω  — такой вектор, что   0T eTr


ω

. Слабым решением задачи (1) называется такой вектор Yu , что если 

Yω  — такой вектор, что  TV Y


 u ω , и  TV Y


 w  

удовлетворяется вариационное уравнение для задачи 

    def nd d

 

     w σ u w t  (2) 

где 

    4 def σ u C u , 
n 
 t σ n  и 

     . 

Алгоритм численного решения задачи собственных колеба-

ний для тонкостенной оболочки. Рассмотрим задачу (2) для 

тонкостенной оболочки  , для которой введем ортогональные 

(криволинейные) координаты iX , в которых это тело представляет 

собой некоторую окрестность  двумерной поверхности 0 : 
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 (3) 

где 1 2( , )X Xρ  — радиус вектор точек на срединной поверхности, 
1 2( X ,X )n  — вектор нормали к срединной поверхности, x  — радиус 

вектор произвольной точки области. 
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Введем для   векторы локального базиса 
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Будем предполагать выполненными следующие допущения, 

кторые обычно принимают в теориях оболочек типа теории 

Тимошенко [1,10]:  

1) члены соотношений, имеющие порядок  kO h , 1k   

пренебрежимо малы; 

2) вместо пространства  
3

1Y H     рассматривается Y

пространство  вектор-функций вида: 
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u U γ γ n

U γ
 (5) 

3) нормальные деформации пренебрежимо малы: 

 
33 3 3 0       r ε r n ε n . (6) 

Введем прямоугольную декартову систему координат 
iOx , с 

базисными ортами 
ie . Тогда каждому элементу 3X Y  u U γ  может 

быть однозначно поставлен в соответствие столбец  
6

1

0u H    : 

  1 2 3 1 2 3
T

u U U U    , i

iUU e , i

iγ e , 0i

in  . 

Дадим постановку задачи для слабого решения в теории оболочек 

Тимошенко. Пусть  
6

1 1

0Y H    , а 
1Y  — такая вектор-функция, 

что ( )
u

Tr   0 . Тогда слабым решением задачи поиска напряженно-

деформированного состояния оболочки Тимошенко будем называть 

такой элемент 
1Yu , что  1

Гu Yw V   и  1

Г YV w  и выполнено 

соотношение — вариационное уравнение: 

 2( ) ( )T TLw C Lu d w Rud
 

     (7) 

Здесь оператор L  имеет вид: 
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где 
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Матрица масс R  имеет вид: 
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где 
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Матрица модулей упругости C  имеет вид: 
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, (10) 

где  
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Для решения данной задачи на основе метода конечных элементов 
более удобной является запись с применением вариационного 
уравнения вариационного принципа Хеллингера-Рейснера, которая 
имеет следующий вид.  

Слабым решением задачи поиска напряженно-деформированного 
состояния оболочки Тимошенко будем называть такую пару 

   
9

1 1

0u Y H      , что  1u w V Y   и: 
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


      

 (11) 

где: 

    1
T

HR  B w, Lw C d 


  ,    2
T

T

HR  B , C d , f w w Rud   
 

     . 

Был разработан программный модуль, в котором реализован 
предложенный численный алгоритм решения вариационной задачи 
для собственных колебаний тонкостенной оболочки на основе метода 
конечного элемента, с применением типичных процедур этого метода 
[16]. Программный модуль разработан как составная часть 
программного комплекса SMCM, созданного в НОЦ «Симплекс» 
МГТУ им. Н.Э. Баумана [12]. 

Результаты численного моделирования. Для анализа 
эффективности разработанного численного алгоритма было 
проведено 3 типа расчетов задачи на собственные колебания: 

1) трехмерный расчет в программном комплексе ANSYS 2021 R1; 
2) oболочечный расчет в программном комплексе ANSYS 2021 R1; 
3) оболочечный расчет в программном комплексе SMCM. 
В программе SolidWorks были построены:  

‒ геометрия оболочки с размерами 0,3 м  0,3 м  0,15 м       

(Рис. 1), 
‒ трехмерная геометрия, полученная путем отращивания 

толщины 2h   мм от оболочки, при этом считая оболочку срединной 
поверхностью.  
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Были сгенерированы сетки: 

a) в ПК ANSYS — тетраэдральная сетка с линейной 

аппроксимацией, размер сетки составил: 13,9 млн конечных 

элементов, 2,9 млн узлов, для решения задачи по варианту № 1; 

b) в ПК ANSYS — треугольная сетка с квадратичной 

аппроксимацией, размер сетки составил: 37,8 тыс конечных 

элементов, 76,4 тыс узлов, для решения задачи по варианту № 2; 

c) в SMCM - треугольная сетка с квадратичной аппроксимацией, 

размер сетки составил: 37,8 тыс конечных элементов, 76,4 тыс узлов, 

для решения задачи по варианту № 3. 

Для всех расчетов был выбран материал, упругие свойства 

которого представлены в таблице 1. 
Таблица 1 

Упругие свойства материала 

Упругие константы Значения 

Модуль упругости Е , ГПа 300 

Коэффициент Пуассона   0,3 

Плотность 3
, кг/м  7850 

 

Были заданы следующие граничные условия: 
1) в расчете 1 на торце геометрии заданы перемещения по ОХ, 

OY, OZ, равные нулю (рис. 1); 
2) в расчетах 2,3 заданы на одном торце: перемещения по OX, OY, 

OZ, равные нулю, а также углы наклоны нормали к OX, OY, OZ, 
равные нулю (рис. 1). 

Сравнительные результаты 
расчетов полей перемещений 

xU , yU , zU  для разных форм 

колебаний срединной поверх-
ности в глобальной системе ко-

ординат, где OX  направлена по 
нормали к поверхности цилин-
дра, для всех 3-х вариантов 
представлены на рисунках 2, 3 
и 4, а также в таблицах 2-4. 
Анализируя полученные ре-

зультаты расчетов по максимальному и минимальному значениям по-
лей перемещений (таблицы 2-4), можно сделать вывод, что наиболее 
приближенным решением к варианту № 1 расчета — решению трех-
мерной задачи на собственные колебания в ПК ANSYS,  является ре-
шение, полученное в ПК SMCM. Оболочечный вариант № 2 решения 

 
Рис 1. Граничное условие: перемещения 

y

z x
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задачи в ПК ANSYS обеспечивает более низкую точность моделиро-
вания перемещений. 

Таблица 2 

Первая форма колебаний: сравнение максимальных и минимальных  

значений перемещений для всех вариантов расчета 

 

Поля пере-

мещений 

1 расчет 

Макси-

мум 

2 расчет 

Макси-

мум 

3 расчет 

Макси-

мум 

1 расчет 

Мини-

мум 

2 расчет 

Мини-

мум 

3 расчет 

Мини-

мум 

x
U  1,6818 1,8350 1,7497 -1,5706 -1,5602 -1,4332 

yU  1,7109 1,6168 1,6731 -1,4896 -1,7130 -1,6552 

z
U  0,0862 0,0727 0,0908 -0,0863 -0,0736 -0,0908 

 
Таблица 3 

Вторая форма колебаний: сравнение максимальных и минимальных значений 

перемещений для всех вариантов расчета 

 
Поля 

переме-

щений 

1 расчет 

Макси-

мум 

2 расчет 

Макси-

мум 

3 расчет 

Макси-

мум 

1 расчет 

Мини-

мум 

2 расчет 

Мини-

мум 

3 расчет 

Мини-

мум 

x
U  1,7100 1,7882 1,6541 -1,4896 -1,6855 -1,6735 

yU  1,5716 1,7046 1,7490 -1,6827 -1,5380 -1,4334 

z
U  0,0863 0,0730 0,0908 -0,0863 -0,0730 -0,0908 

 
Таблица 4 

Третья форма колебаний: сравнение максимальных и минимальных значений 

перемещений для всех вариантов расчета 

 

Поля пере-

мещений 

1 расчет 

Макси-

мум 

2 расчет 

Макси-

мум 

3 расчет 

Макси-

мум 

1 расчет 

Мини-

мум 

2 расчет 

Мини-

мум 

3 расчет 

Мини-

мум 

x
U  1,5215 1,6882 1,5582 -1,5216 -1,7754 -1,5582 

yU  1,5230 1,7421 1,5575 -1,5228 -1,7665 -1,5575 

z
U  0,1044 0,0545 0,1052 -0,1044 -0,0545 -0,1052 

 

Сравнительные результаты полученных собственных частот 

(таблица 5) показывают, что наиболее приближенными значениями к 

собственным частотам варианта № 1 расчета являются частоты, 

полученные в результаты решения в ПК SMCM. Кроме того, на 

рисунке 4 можно заметить, что форма колебаний, полученная для 

собственной частоты 
3v  при оболочечном расчете № 2 в ПК ANSYS, 
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сильно отличается от формы, полученной для 
3v  при трехмерном 

расчете № 1. 

Но форма колебаний для 
3v , полученная при оболочечном расчете 

№ 3 в ПК ANSYS, повторяет эталонную форму при трехмерном 

расчете № 1. 

 
Таблица 5 

Сравнение собственных значений 

 
 1 расчет 2 расчет 3 расчет 

1
  847,57 817,00 872,0269 

2
  847,58 817,23 872,0274 

3
  935,02 907,51 963,3300 

 

  
а 
 

  
б 

1.3204
0.95904
0.59766
0.23628
-0.1251
-0.48648
-0.84786
-1.2092

1.6818 Мах

-1.5706 Мin

B: Modal
Directional Deformation
Type: Directional Deformation ( )
Frequency: 847.57 Hz
Unit: m
Globel Coordinete System
3/24/23 5:58 PM

Axis

1.457793
1.080546
0.7033003
0.3260541
-0.05119206
-0.4284382
-0.8056844
-1.182931

1.835039 Мах

-1.560177 Мin

C: Modal
Directional Deformation
Type: Directional Deformation ( )
Frequency: 817. Hz
Unit: m
Globel Coordinete System
25/03/23 2:12

Axis
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в 

Рис. 2.  Сравнение собственной формы колебаний для 
1

  

(а — трехмерный расчет 1 (ANSYS); б — оболочечный расчет 2 (ANSYS); 
в — оболочечный расчет 3 (SMCM)) 

 

  
а 

  
б 

y

x
z

1.7497е+00
1.3961е+00
1.0424е+00
6.8876е-01
3.3510е-01
-1.8559е-02
-3.7222е-01
-7.2588е-01
-1.0795е+00
-1.4332е+00

1.3545
0.99902
0.6435
0.28798
-0.067532
-0.42305
-0.77856
-1.1341

1.71 Мах

-1.4896 Мin

B: Modal
Directional Deformation
Type: Directional Deformation ( )
Frequency: 847.58 Hz
Unit: m
Globel Coordinete System
3/24/23 7:02 PM

Axis

1.402265
1.016295
0.6303252
0.244355
-0.1416152
-0.5275853
-0.9135555
-1.299526

1.788236 Мах

-1.685496 Мin

C: Modal
Directional Deformation
Type: Directional Deformation ( )
Frequency: 817.23 Hz
Unit: m
Globel Coordinete System
25/03/23 2:15

Axis
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в 

Рис. 3.  Сравнение собственной формы колебаний для 
2

  

(а — трехмерный расчет 1 (ANSYS); б — оболочечный расчет 2 (ANSYS); 

в — оболочечный расчет 3 (SMCM)) 

 

  
а 
 

  
б 

y

x
z

1.6541е+00
1.2843е+00
9.1462е-01
5.4489е-01
1.7517е-01
-1.9456е-01
-5.6428е-01
-9.3401е-01
-1.3037е+00
-1.6735е+00

B: Modal
Directional Deformation
Type: Directional Deformation ( )
Frequency: 935.02 Hz
Unit: m
Globel Coordinete System
3/24/23 7:05 PM

Axis

C: Modal
Directional Deformation
Type: Directional Deformation ( )
Frequency: 907.51 Hz
Unit: m
Globel Coordinete System
25/03/23 2:16

Axis

1.1834
0.84529
0.50717
0.16904
-0.16908
-0.50721
-0.84533
-1.1835

1.5215 Мах

-1.5216 Мin

1.303356
0.9185092
0.5336618
0.1488145
-0.2360328
-0.6208801
-1.005727
-1.390575

1.688204 Мах

-1.775422 Мin
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в 

Рис. 4.  Сравнение собственной формы колебаний для 
3

  

(а — трехмерный расчет 1 (ANSYS); б — оболочечный расчет 2 (ANSYS); 

в — оболочечный расчет 3 (SMCM)) 

 

Выводы. Предложен численный алгоритм решения задачи на соб-

ственные колебания для тонкостенных оболочечных композитных 

конструкций и создано программное обеспечение SMCM на основе 

метода конечных элементов и разработанного численного алгоритма.  

Было проведено решение тестовой задачи для оболочечного эле-

мента цилиндрической конструкции для 3-х вариантов расчетов: ре-

шения трехмерной задачи упругости в ПК ANSYS, оболочечного ре-

шения ПК ANSYS и с помощью оболочечного решения комплекса 

SMCM.  
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Finite element modeling of natural vibrations  

of shell structures 

 Yu.I. Dimitrienko, Yu.V. Yurin, I.O. Bogdanov, 

A.A. Maremshaova 

Bauman Moscow State Technical University, Moscow, 105005, Russia 

 

A numerical algorithm for solving the problem of natural vibrations for thin-walled shell 

structures based on the finite element method is proposed. A software module has been 

developed as part of the SMCM software package, which implements the proposed numer-

ical algorithm. A test problem was solved for natural vibrations of a cylindrical shell struc-

tural element. A comparative analysis of eigenfrequencies and eigenmodes was carried 

out with similar results obtained using a two-dimensional shell solution in the ANSYS soft-

ware package, as well as with the results of solving a three-dimensional problem for nat-

ural vibrations in the ANSYS software package. 
 

Keywords: shells, natural oscillations, finite element method, variational problem state-

ments, ANSYS, SMCM 
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