539.3 Timoshenko-type asymptotic theory for thin multi-layered plates shells

Dimitrienko Y. I. (Bauman Moscow State Technical University), Yurin Y. V. (Bauman Moscow State Technical University)

THIN MULTI-LAYERED SHELLS, ASYMPTOTIC THEORY, ASYMPTOTIC EXPANSIONS, TIMOSHENKOTYPE THEORY, KIRCHHOFF — LOVE-TYPE THEORY


doi: 10.18698/2309-3684-2018-1-1640


The paper presents a new modification of asymptotic theory describing thin multi-layered shells with finite shear rigidity. It is based on asymptotic analysis of general threedimensional equations from the elasticity theory for multi-layered bodies. This modification allows us to derive averaged equations from a Timoshenko-type plate theory. We identified the small geometrical parameter and used it to carry out our asymptotic analysis. We stated local elasticity theory problems which may be solved analytically. We show that when only the dominant terms of asymptotic expansions are taken into account, an asymptotic theory will result in the averaged plate equations of the Kirchhoff — Love type. When taking into account those terms that follow the dominant ones in asymptotic series in a self-similar way as compared to the previous approximation, an asymptotic theory will lead to Timoshenko-type averaged equations. At the same time, theoretical accuracy of the resulting truncated asymptotic solution is as high as that of the solution according to a Kirchhoff — Love type theory. The asymptotic theory modification that we developed makes it possible to use explicit analytical expressions to compute all six stress tensor components for a multi-layered plate with a high degree of accuracy. We used our method to perform a numerical simulation of stresses and displacements in a multi-layered plate subjected to uniform pressure that causes the plate to bend. Numerical computations show that our Timoshenko-type asymptotic theory provides a similarly high accuracy of computing flexural, shear and lateral stresses as compared to a three-dimensional finite element solution over a very fine mesh and a Kirchhoff — Love-type asymptotic theory. A Timoshenko-type theory will provide a better result for computing buckling than a Kirchhoff — Love-type theory, especially for relatively short plates. When the displacement is longitudinal, a Timoshenko-type theory will only provide a good result for elongated plates.


[1] Scott Burton W., Noor A.K. Computer Methods in Applied Mechanics and Engineering, 1995, vol. 124, no. 1–2, pp. 125–151.
[2] D’Ottavio M., Dozio L., Vescovini R., Polit O. Composite Structures, 2016, vol. 155, pp. 45–62.
[3] Grigolyuk E.I., Kulikov G.M. Mekhanika kompozitnykh materialov — Mechanics of Composite Materials, 1988, no. 4, pp. 698–704.
[4] Ghugal Y.M., Shmipi R.P. Journal of Reinforced Plastics and Composites, 2001, vol. 20, no. 3, pp. 255–272.
[5] Tornabene F. Computer Methods in Applied Mechanics and Engineering, 2011, vol. 200, pp. 931–952.
[6] Alfutov N.A., Zinovev P.A., Popov B.G. Raschet mnogosloynykh plastin i obolochek iz kompozitsionnykh materialov [Computing parameters of multi-layered composite plates and shells]. Moscow, Mashinostroenie Publ., 1984, 264 p.
[7] Belkin A.E., Gavryushin S.S. Raschet plastin metodom konechnogo elementa [Using finite element methods to compute plate parameters]. Moscow, BMSTU Publ., 2008, 232 p.
[8] Zveryaev E.M., Makarov G.I. Prikladnaya matematika i mekhanika — Journal of Applied Mathematics and Mechanics, 2008, vol. 72, no. 2, pp. 308–321.
[9] Dimitrienko Yu.I. Composite science and technologies, 1999, vol. 59, pp. 1041–1053.
[10] Sheshenin S.V. Izvestiya RAN. Mekhanika tverdogo tela — Mechanics of Solids, 2006, no. 6, pp. 71–79.
[11] Nazarov S.A., Svirs G.Kh., Slutskiy A.S. Matematicheskiy sbornik — Sbornik: Mathematics, 2011, vol. 202, no. 8, pp. 41–80.
[12] Kohn R.V., Vogelius M. International Journal of Solids and Structures, 1984, vol. 20, no. 4, pp. 333–350.
[13] Panasenko G.P., Reztsov M.V. Doklady Akademii nauk SSSR — Proceedings of the USSR Academy of Sciences, 1987, vol. 294, no. 5, pp. 1061–1065.
[14] Levinski T., Telega J.J. Plates, laminates and shells. Asymptotic analysis and homogenization. Singapore, London, World Scientific Publishing, 2000, 738 p.
[15] Kolpakov A.G. Homogenized models for thin-walled nonhomogeneous structures with initial stresses. Berlin, Heidelberg, Springer Verlag, 2004, 228 p.
[16] Dimitrienko Yu.I. Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki — Herald of the Bauman Moscow State Technical University. Series Natural Sciences, 2012, no. 3, pp. 86–100.
[17] Dimitrienko Yu.I., Gubareva E.A., Sborshchikov S.V. Matematicheskoe modelirovanie i chislennye metody — Mathematical Modeling and Computational Methods, 2014, no. 1, pp. 36–57.
[18] Dimitrienko Yu.I., Yakovlev D.O. Inzhenernyy zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2013, no. 7 (19). DOI: 10.18698/2308-6033-2013-7-899
[19] Dimitrienko Yu.I., Yurin Yu.V. Inzhenernyy zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2017, no. 10. DOI: 10.18698/2308-6033-2017-10-1693.
[10] Dimitrienko Yu.I., Dimitrienko I.D. International Journal for Multiscale Computational Engineering, 2017, vol. 15, no. 3, pp. 219–237.
[21] Dimitrienko Yu.I., Yurin Yu.V. Matematicheskoe modelirovanie i chislennye metody — Mathematical Modeling and Computational Methods, 2016, no.4, pp. 47–66.
[22] Dimitrienko Yu.I., Gubareva E.A., Yurin Yu.V. Inzhenernyy zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2016, no. 12 (60). DOI: 10.18698/2308-6033-2016-12-1557
[23] Dimitrienko Yu.I., Dimitrienko I.D. Applied Mathematical Sciences, 2016, vol. 10, no. 60, pp. 2993–3002.
[24] Dimitrienko Yu.I., Gubareva E.A., Sborshchikov S.V. Matematicheskoe modelirovanie i chislennye metody — Mathematical Modeling and Computational Methods, 2016, no. 2, pp. 3–23.
[25] Vasilev V.V. Mekhanika konstruktsiy iz kompozitsionnykh materialov [Mechanics of composite material structures]. Moscow, Mashinostroenie Publ., 1988, 272 p.
[26] Dimitrienko Yu.I. Mekhanika sploshnoy sredy [Continuum mechanics]. In 4 vols. Vol. 4. Osnovy mekhaniki tverdykh sred [Foundations of mechanics of solid media]. BMSTU Publ., 2013, 624 p.
[27] Dimitrienko Yu.I. Nonlinear continuum mechanics and large inelastic deformations. Dordrecht, Heidelberg, London, New York, Springer, 2002, 721 p.
[28] Dimitrienko Yu.I. Mekhanika sploshnoy sredy. V 4 tomakh. Tom 4. Tenzornyy analiz. [Continuum mechanics. In 4 vols. Vol. 1. Tensor calculus]. BMSTU Publ., 2011, 463 p.
[29] Dimitrienko Yu.I., Yurin Yu.V. Matematicheskoe modelirovanie i chislennye metody — Mathematical Modeling and Computational Methods, 2015, no. 3, pp. 101–118.
[30] Dimitrienko Yu.I., Dimitrienko I.D., Sborshchikov S.V. Inzhenernyy zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2016, no. 11 (59). DOI: 10.18698/2308-6033-2016-11-1555


Димитриенко Ю.И., Юрин Ю.В. Асимптотическая теория типа Тимошенко для тонких многослойных пластин. Математическое моделирование и численные методы, 2018, № 1, с. 16-40



Download article

Количество скачиваний: 714