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МГТУ им. Н.Э. Баумана, г. Москва, 105005, Россия

Предложен новый вариант асимптотической теории тонких многослойных пла
стин с конечной сдвиговой жесткостью основанный на асимптотическом анали
зе общих трехмерных уравнений теории упругости многослойных тел Этот вари
ант позвол�ет получить осредненные уравнени� теории пластин типа Тимошенко
Асимптотический анализ проводитс� по малому геометрическому параметру
Сформулированы локальные задачи теории упругости которые допускают ана
литическое решение Показано что при учете только главных членов в асимпто
тических разложени�х асимптотическа� теори� приводит к осредненным уравне
ни�м пластин типа Кирхгофа Л�ва При учете идущих за главными членов
в асимптотических р�дах самоподобным образом с предыдущим приближением
асимптотическа� теори� приводит к осредненным уравнени�м типа Тимошенко
Теоретическа� точность получившегос� урезанного асимптотического решени� при
этом не ниже чем решени� согласно теории типа Кирхгофа Л�ва Разработан
ный вариант асимптотической теории с помощью �вных аналитических формул
позвол�ет с высокой точностью вычисл�ть все шесть компонент тензора напр�
жений в многослойной пластине С помощью разработанного метода проведено
численное моделирование напр�жений и перемещений в многослойной пластине при
изгибе равномерным давлением Численные расчеты показали что разработанна�
асимптотическа� теори� типа Тимошенко дает примерно одинаковую высокую
точность расчета изгибных сдвиговых и поперечных напр�жений в сравнении
с трехмерным конечно элементным решением полученным дл� очень мелких сеток
и асимптотической теорией типа Кирхгофа Л�ва Дл� прогиба теори� типа Ти
мошенко дает лучший результат чем теори� типа Кирхгофа Л�ва особенно дл�
относительно коротких пластин Дл� продольного перемещени� теори� типа Ти
мошенко дает хороший результат только дл� длинных пластин

�лючев�е слова: многослойные тонкие пластины асимптотическа� теори� асимп
тотические разложени� теори� типа Тимошенко теори� типа Кирхгофа — Л�ва

�ведение Тонкостенные конструкции широко применяются
в инженерном деле. Для расчета прочности таких конструкций обыч-
но применяют специальные теории тонких пластин и оболочек, осно-
ванные на системе определенных допущений относительно распре-
деления перемещений и напряжений по толщине конструкции [1–9]. 
Двумерные теории в отличие от прямых трехмерных теорий облада-
ют важным свойством сокращения вычислительных затрат. Однако
платой за эту эффективность является снижение точности: часто
классические теории пластин и оболочек Тимошенко и Кирхгофа — 

Лява довольно грубо воспроизводят распределение напряжений меж-
слойного сдвига и поперечных напряжений.  

Для повышения точности используют различные методы, среди
которых разложение в ряды по поперечной координате, интегриро-
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вание трехмерных уравнений после решения задачи теории пластин
и оболочек и др. Однако при этом возникает вопрос об обоснованно-
сти этих методов, поскольку верифицировать их можно лишь на
частных примерах. В этом смысле одним из наиболее обоснованных
методов является метод асимптотических разложений по малому
геометрическому параметру [10–17]. Данный метод является матема-
тически строгим, в ряде случаев удается математически получить
оценки точности асимптотических решений по сравнению с точным
трехмерным решением. Кроме того, этот метод является достаточно
универсальным и может быть применен для решения широкого клас-
са задач, в том числе и для нелинейных задач. 

В работах [16–24] с помощью метода асимптотических разложений
обоснована теория тонких многослойных пластин типа Кирхгофа —  

Лява без использования каких-либо допущений относительно характера
распределения перемещений и напряжений по толщине. В этой теории
осредненные уравнения практически полностью совпадают с классиче-
скими уравнениями Кирхгофа — Лява, благодаря этому удается полу-
чить аналитические выражения для вычисления всех шести компонент
тензора напряжений. Однако теория Кирхгофа — Лява не учитывает ко-
нечных сдвиговых свойств пластин и дает заметные погрешности при
вычислении перемещений для относительно коротких пластин [25].  
В этой связи теории типа Тимошенко обычно обеспечивают повышен-
ную точность при расчете перемещений. 

Цель настоящей статьи — разработка варианта асимптотической
теории тонких пластин типа Тимошенко, который так же, как и
асимптотическая теория Кирхгофа — Лява, основан только на асимп-
тотическом анализе общих трехмерных уравнений теории упругости
по малому геометрическому параметру.  

Основные допущени� асимптотической теории тонких упру
гих пластин Для многослойной пластины постоянной толщины
введем малый параметр / 1,k = = где  — характерный линей-

ный размер (диаметр).  
Рассмотрим в прямоугольной декартовой системе координат

(ось 3 направлена по нормали пластины) трехмерную квазистати-

ческую задачу линейной теории упругости [26, 27]: 

3 3 3 3 3

0,      

1
,

2

,

: , : , : [ ] 0, [ ] 0.� �

� s =

e = � +�

s = e

S s = - d S = S s = =%

   (1) 
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Система (1) состоит из уравнений равновесия, соотношений Ко-
ши, соотношений линейной упругости, граничных условий на внеш-
ней, внутренней поверхности 3�S  (их уравнение имеет вид 3 / 2)=�%

и торцевой поверхности ,S а также граничных условий на поверх-

ности контакта S слоев пластины. В системе (1) обозначены: 

/� = � �%  — оператор дифференцирования по декартовым коорди-

натам [28];  — компоненты вектора перемещений; 3[ ]  — скачок

функций. Здесь и далее индексы, обозначенные заглавными буквами
, , , ,K принимают значения 1, 2, а индексы , , ,  — зна-

чения 1–3). 
Принимаем основное допущение, состоящее в том, что давления

�% на внешней и внутренней поверхностях пластины имеют порядок

малости 3( )k по сравнению с характерным значением модуля упру-

гости материала пластины 0  (размерная величина): 

3 ,� �= k% 0(1) ,� =                              (2) 

где (1)  — безразмерная величина порядка 1. Допущение (2), как пра-

вило, соответствует реальным условиям нагружения тонких пластин.  
Асимптотическое решение задачи теории упругости дл� тон

ких пластин Решение задачи (2) ищем в виде асимптотических раз-
ложений по параметру k в виде функций, зависящих от двух глобаль-
ных координат в плоскости пластины и локальной поперечной

координаты :x

(0) (1) 2 (2)( ) ( , ) ( , ) ...= + k x + k x +

(0) (1) 2 (2) ...e = e + ke + k e +                                               (3) 

(0) (1) 2 (2) 3 (3) ... .s = s + ks + k s + k s +

Для производных по локальной координате будем использовать

обозначения (1) (1)
/3 / ,= � �x а по глобальным координатам — 

(1) (1)
, / .= � � Также введем операцию осреднения по толщине

пластины

0,5
(1) (1)

0,5

.
-

< >= x�                                       (4) 
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Подставим разложения (3) в соотношения Коши в системе (1), 
при этом используем правила дифференцирования функций локаль-
ных координат [16] 3( / / (1/ ) / ).� � � � � + k d � �x% Тогда получим

следующие соотношения между деформациями и перемещениями
для разных приближений: 

( ) ( ) ( )
, ,

1
,

2
e = + ( ) ( ) ( 1)

3 3, /3

1
,

2
+e = +

( ) ( 1)
33 3/3 , 0, 1, 2, ... .+e = =                          (5) 

Здесь обозначены производные по локальной координате (1)
/3 =

(1) /= � �x и глобальным координатам (1) (1)
, / .= � �

Напряжения и деформации -го приближения связаны определя-
ющими соотношениями упругости:  

( ) ( ).s = e                                          (6) 

Полагаем, что все слои пластины являются моноклинными мате-
риалами (содержат не более 13 ненулевых констант [26–28]), поэтому
эти соотношения можно записать в виде трех групп уравнений: 

( ) ( ) ( )
33 33 ,s = e + e ( ) ( )

3 33 32 ,s = e

( ) ( ) ( )
33 333333 33 ,s = e + e                                (7) 

в которых явным образом выделены сдвиговые ( )
3e и поперечные

( )
33e деформации. 

Локальные задачи Подставляя разложения (3) в уравнения рав-
новесия и граничные условия системы (1) и приравнивая в уравнениях

равновесия члены при 1-k к нулю, а при остальных степенях от k

к некоторым величинам (0) (1) (2), , , не зависящим от ,x получим

рекуррентную последовательность локальных задач теории упругости.  
Задача для нулевого приближения имеет вид: 

(0)
3/3

(0) (0) (0) (0) (0) (0) (0) (0)
33 3 3 33 333333 3 3 33 33

(0) (0) (0) (0) (0) (1) (0) (1)
, , 3 3, 33/3 3/3

(0) (0) (1)
3 3 3

0,

, 2 , ,

1 1
  ,  , ,  

2 2

: 0, :[ ] 0, [ ] 0,�

s =

s = e + e s = e s = e + e

e = + e = + e =

S s = S s = = (1) 0. (8)< > =
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Для более высоких приближений локальные задачи имеют вид: 

( ) ( 1) ( 1)
,3/3

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
33 3 3 33 333333 3 3 33 33

( ) ( ) ( ) ( ) ( ) ( 1) ( ) ( 1)
, , 3 3, 33/3 3/3

( )
3 3

,

 , 2 , ,

1 1
  ,  , ,  

2 2

:

- -

+ +

� �

s + s =

s = e + e s = e s = e + e

e = + e = + e =

S s = - d ( ) ( 1) ( 1)
3 3 3, :[ ] 0, [ ] 0, 0; (9)+ +d S s = = < >=

где ( ) ( 1), -s  —  входные данные.  

После введения функций ( ) уравнения равновесия в системе (1) 

принимают вид: 

(0) (1) 2 (2) ... 0.+ k + k + =                           (10) 

Решением локальной задачи нулевого приближения (8) являются

функции (1) (0) (0), , ,e s зависящие от локальной координаты x и

входных данных этой задачи — перемещений (0) ( ). Решением

локальных задач (9) являются функции ( 1) ( ) ( ), , .+ e s

Решение локальной задачи нулевого приближени� Уравнения
равновесия с граничными условиями в локальной задаче (8) имеют
вид

(0)
3 0,s =  : 0,5 0,5."x - < x <                            (11) 

Подставив в уравнения (11) вторую и третью группу определяю-

щих соотношений (8) для (0)
3 ,s получим

(0)
3 3 3 0,e = (0) (0)

33 3333 33 0.e + e =                  (12) 

Отсюда следует, что в нулевом приближении деформации меж- 
слойного сдвига во всех слоях являются нулевыми, а поперечная де-
формация — ненулевой: 

(0)
3 0,e = (0) (0)

333 ,e = - e 1
3 3333 33 .-=               (13) 

Подставив выражения (8) в соотношения (13) для деформаций
(0)

3e и (0)
33 ,e выраженные через перемещения, после интегрирования

получившихся уравнений, с учетом условий (1) 0,< >= находим пе-

ремещения

(1) (0)
3, ,= -x (1) (0)

33 ,= e                             (14) 
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где обозначены функции

3 3( ) xx = - < >                                 (15) 

и введены операторы

1/2 1/2

1/2

,

.

x x

x
- -

x

x
-

x = x x - x x

x = x - x x

� �

�

% % % %

% %

                   (16) 

Подставив первые два уравнения (13) в первую группу опреде-
ляющих соотношений (8), находим напряжения

(0) (0) (0) ;s = e                                          (17) 

(0) 1
33 3333 33 ,-= -                            (18) 

где (0)e выражается по формулам (8). 

Решение локальных задач дл� высоких приближений Осу-
ществляя решение локальных задач (19) для более высоких прибли-
жений по аналогичному алгоритму, находим напряжения

( 1) ( ) ( )
3 2 ,3

0,5

( 0,5), 0,1, 2, ... .
x

+
-

-

s = - d d - s x + x + =�    (19) 

Условия существования решения (19) задач (9), удовлетворяю-

щих граничным условиям ( )
3 33 +s = - d d на внешней поверхности

0,5,x = приводят к следующей системе уравнений для вычисления

функций: 

( ) ( )
3 2, ,=< s > -D d d .+ -D = -                  (20) 

С учетом формул (20) напряжения ( )
3s (19) принимают вид

( 1) ( )
3 3,3 0,5 .+

-
x

s = - s - + D x + d d                  (21) 

Запишем формулы (21) в явном виде для напряжений ( )
3s до тре-

тьего приближения и напряжений ( )
33s до четвертого приближения: 
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(1) (0)
,3 ,

x
s = - s (2) (1)

,3 ,
x

s = - s (3) (2)
,3 ,

x
s = - s

(1) (0)
33 3 , 0,

x
s = - s = (2) (1) (0)

,33 3 , ,
x x x

s = - s = s          (22) 

(3) (2) (1)
,33 3 ,( 0,5) ( 0,5) ,- -

x x x

s = - -D x+ - s = - -D x + + s

(4) (3) (2)
,33 3 , .

x x x

s = - s = s

Для вычисления напряжений (1)
3 ,s (2)

3 ,s (3)
3s и (1)

33s … (4)
33s необ-

ходимо иметь только напряжения (0) ,s (1) ,s (2).s Напряжения (0)s

находим по формулам (17). Для вычисления (1)s используем опреде-

ляющие соотношения в задаче (9) при 1:=

(1) (1) (1)
33 33 .s = e + e                                 (23)  

Для того чтобы найти деформацию (1)
33 ,e используем определяю-

щие соотношения системы (9): 

(1) (1) (1)
33 333333 33 .s = e + e                               (24) 

С учетом соотношений (22) имеем (1)
33 0.s = Тогда, подставив это

выражение в (24), получаем

(1) 1 (1)
3333 3333 .-e = - e                                (25) 

Подставив выражение (25) в соотношение (23), запишем

(1) (0) (1) .s = eС                                      (26) 

В формулу (26) входят выражения для деформаций (1) ,e соотно-

шения для которых находим из системы (9): 

(1) (1) (1)
, ,

1
( ).

2
e = +                                   (27) 

Подставив формулу (14) в соотношения (27) и (25), а первую
формулу (22) во второе определяющее соотношение задачи (9), полу-

чаем выражения для деформаций (1) ,e (1)
33e и (1)

3e через перемещения
(0)
3  и (0):

(1) (1) (1) (0)
, , 3,

1
 ( ) ;

2
e = + = -x                              (28) 
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(1) (1) (0)
3 333 3, ;e = - e = x                             (29) 

(1) 1 (1) 1 (0) 1 (0) (0)
3 3 3 3 3 3, ,3 3

1 1 1
.

2 2 2
- - -

x x
e = s = - s = -

Соотношения (26) и (28) определяют напряжения (1)s через пе-

ремещения нулевого приближения (0)
3  и (0). Формулы (17) и кине-

матические соотношения нулевого приближения

(0) (0) (0)
, ,

1

2
e = +                                   (30) 

определяют напряжения (0)s через (0). Тем самым с помощью фор-

мул (22) можно вычислить все поперечные напряжения (2)
33s и (3)

33s до

третьего приближения, сдвиговые напряжения (2)
3s  до второго при-

ближения. �спользуя формулы (17) и (26)–(28), если известны пере-

мещения нулевого приближения (0)
3 и (0) , можно получить напря-

жения (0)s и (1)s до первого приближения: 

(1) (0) (0)
3, .s = - xС                                   (31) 

Осредненные уравнени� равновеси� дл� многослойной плас
тины Подставив уравнения (20) в асимптотическое разложение (10) 
уравнений равновесия пластины, получим

(0) (1) 2 (2)
3, , , ... 0.< s > +k < s > +k < s > -D d + =           (32) 

Домножим асимптотическое разложение уравнений равновесия
пластины (1) на xk и проинтегрируем их по толщине, в результате

запишем вспомогательное уравнение

(0) (1) 2 (1) (2)
, ,3 3 ... 0.k < xs > - < s > + k < xs > - < s > + =         (33) 

Здесь учтено, что (1) (1)
33/3 ,< xs > = - < s > (2) (2)

33/3< xs > = - < s > в силу

граничных условий на (0) (1)
3 3 3: 0, 0.�S s = s =

Введем обозначения для усилий , моментов и перерезы-

вающих сил в пластине: 

(0) (1) 2 (2) ...,=< s > +k < s > +k < s > +

(1) 2 (2)
3 3 ...,= k < s > +k < s > +                            (34) 

(0) 2 (1) 3 (2) ... .= k < xs > +k < xs > +k < xs > +
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Тогда уравнения (29) и (33) можно записать в виде уравнений рав-
новесия и уравнений моментов, традиционном для теории пластин: 

, 0,= , ,= D , 0,- =                      (35) 

где 2 .D = k D

Это и есть искомые осредненные уравнения установившихся ко-
лебаний многослойной пластины. 

Перемещени� второго и третьего приближений До этого эта-
па алгоритм вычислений в точности совпадал с алгоритмом для
асимптотической теории пластин типа Кирхгофа — Лява [16, 19]. 

Для нахождения перемещений (0)
3 и (0) в этой теории используют-

ся осредненные уравнения равновесия (35). 
�спользуя кинематическое соотношение системы (9) при 1=

(1) (2)
33 3/3 ,e =                                               (36) 

находим перемещение

(2) (1) (0)
33 33 3, .x x=< e > =< x >                           (37) 

Для повышения точности теории дополнительно рассмотрим пе-
ремещения не только нулевого и первого, но и второго приближения

(2) , и третьего приближения (3)
3 . Если повторить алгоритм их вы-

числения по аналогии с первым приближением с помощью решения
локальных задач (9), то получим снова вариант теории пластин

Кирхгофа — Лява, так как (2) будут вновь выражены через (0)
3 и

(0). По этой причине поступим иначе: положим, что перемещения
(2) имеют линейную зависимость от координаты ,x аналогичную
(1)  (14), а перемещение (3)

3  — аналогичную (2)
3  (37): 

(2) (2) ,= xg (3) (2)
3 ,3 .=< x > xg                        (38) 

Здесь (2)g  — некоторые новые неизвестные функции глобаль-

ных координат. 
Тогда, подставляя выражения (38) в соотношения (5), находим

деформации: 

(2) (2) (2) (2) (2)
, , , ,

1 1
,

2 2
e = + = x g + g

(2) (3) (2)
3 ,33 3/3 ,e = = x g                                  (39) 

(1) (1) (2) (0) (2)
3 ,3 3, /3

1 1
.

2 2
e = + = e + g%
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Сдвиговые деформации (1)
3e были вычислены ранее по формуле (30) 

с помощью перемещений нулевого приближения, поэтому для сдвиго-
вых деформаций, вычисляемых с помощью перемещений второго при-

ближения, будем использовать специальное обозначение — (1)
3 .e%

Осредненные уравнени� дл� пластины Подставив формулы
(39) в определяющие соотношения системы (9), находим напряжения
второго приближения

(2) (2) (2) (0) (2)
33 ,33 ,s = e + e = x g                  (40) 

а также касательные напряжения первого порядка

(1) (1) (0) (2)
3 3 3 3 3 ,3 32 .s = e = e + g%%               (41) 

Касательные напряжения (1)
3s% вычислены ранее по формулам (22) 

с помощью перемещений нулевого приближения, поэтому для каса-
тельных напряжений, вычисляемых с помощью перемещений второ-
го приближения, по аналогии со сдвиговыми деформациями, будем

использовать специальное обозначение — (1)
3 .s%

Подставив выражения (17), (40) и (26), (28) в соотношения (34) 
для усилий и моментов, находим

(0) (0) (0) (0) (2)
,3, ,С С=< > e + k < x > - + kg              (42) 

(0) (0) 2 2 (0) (0) (2)
,3, .С С= k < x > e + k < x > - + kg

При подстановке выражений (41) в соотношения (34) получим
выражение для перерезывающих сил

(2) (0)
3 3 3 3 3 , .= k < > g + k < > e                  (43) 

Введем следующие обозначения для мембранных, смешанных, 
изгибных, а также сдвиговых жесткостей пластины: 

(0) ,=< > (0) ,= k < x > 2 2 (0) ,= k < x >     (44) 

3 3 ,=< > 3 3 3 .= k < >

Введем углы поворота нормали к срединной поверхности плас- 
тины: 

(0) (2)
3, .g = - + kg                                     (45) 

Тогда
(2) (0)

3, .kg = g +                                      (46) 
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Введем искривления срединной поверхности пластины

, ,2 ,h = g + g (0)
3 3,2 ,h = g +                       (47) 

и определяющие соотношения (42) примут вид: 

(0) ,= e + h

(0) ,= e + h                               (48) 

(0)
3 ,2 .= h + e

Уравнения (35), (48), а также (47) и (30) образуют систему из пяти

уравнений относительно пяти неизвестных: (0) , (0)
3 ,  .g Эта си-

стема в точности совпадает с классической системой уравнений пла-

стин Тимошенко за исключением члена (0)
,e в выражении для

перерезывающей силы. 
После решения этой системы напряжения в слоях пластины вы-

числяются по формулам (22). С практической точки зрения для до-
стижения приемлемой инженерной точности вычислений для напря-
жений s достаточно ограничиться только нулевым, первым и

вторым приближениями
0

,s
1

,s
2

.s Для сдвиговых напряжений

3s минимально необходимым является третье приближение (т. е. 

необходимо учесть члены
1
3 ,s

2
3s и

3
3 ),s а для поперечных

напряжений 33s  — четвертое приближение (т. е. требуется удержать

члены
1

33 ,s
2

33 ,s
3

33s и
4

33 ).s Тогда с учетом выражений (17), (22), 

(31) и (40) получаем
0 1 22 (0) (0) (0) (0) 2 (0) (2)

,3, ,s = s + ks + k s = e - k x + k x gС

0 1 2 32 3
3 3 3 3 3

(0) 2 (1) 3 (2)
, , ,

(0) (0) 2 (0) (0) 3 (0) (2)
, ,3, ,

x x x

x x x

s = s + ks + k s + k s =

= -k s - k s - k s =

= -k e + k x - k x g

     (49) 

0 1 2 3 42 3 4
33 33 33 33 33 33

2 (0) (0) 3
,

3 (0) (0) 4 (0) (2)
,3,

( 0,5)

.

-
x x

x xx x

s = s + ks + k s + k s + k s =

= k e - k + D x + -

- k x + k x g
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С учетом обозначений (45) для углов поворота нормали записы-
ваем эти формулы в окончательном виде: 

(0) (0)
, ,s = e + kxg

(0) (0) 2 (0)
3 ,, ,

x x
s = -k e + k x g             (50) 

2 (0) (0) 3 3 (0)
33 ,, ( 0,5) .-

x xx x

s = k e - k + D x + + k x g

Деформации срединной поверхности и углы поворота нормали, 
входящие в эти формулы, вычисляются с помощью решения осред-
ненных уравнений (30), (35), (47), (48).  

�згиб многослойной пластины Рассмотрим классическую за-
дачу об изгибе многослойной пластины прямоугольной формы под
действием равномерно распределенного постоянного давления .D

Слои пластины из ортотропных материалов. В качестве граничных
условий выберем условия жесткого закрепления краев пластины

1 1 1 1

1 1

(0) (0) (0) (0) (0)
1 1 2 3 3

0 1 0 1

1 1 20 1

0, 0, 0,

0, 0.

= = G = =

= = G

= = = = =

g = g = g =
     (51) 

Здесь 1  — безразмерная продольная координата пластины; G  — 

контур, ограничивающий срединную плоскую поверхность пласти-
ны. Решение системы уравнений (35), (45)–(48) с граничными усло-
виями (51) будем искать в виде

(0) (0) (0) (0)
1 11 1 3 3

(0)
22

( ), ( ), ( ),

0, 0.

= = g = g

= g =
                (52) 

С учетом ортотропности материалов слоев пластины тожде-
ственно ненулевые уравнения указанной системы принимают вид: 

1 1

1 1

1 1

(0)
1111 1111 1,111,11

(0) (0) (0)
1111 1111 1,11 11 1 11111,11 3,1 1,11

(0) (0)
11 1,1 11113,11 1,111

(0) (0)
1 1

0 1

(0) (0)
3 3

0 1

1 10 1

0;

;

;

0;

0;

0.

= =

= =

= =

� + g =
�
� + g = g + +
�
� g + + = D
��
�

= =�
�
� = =
�
�g = g =��

          (53) 
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Решение данной системы может быть получено в аналитической
форме

(0) 2
1 1 1 1 2 1 11

1 1 1 1 1 1

2(0) 2
1 1 1 1 2 1 13

1 1 ,

1
4 1 ,

2

1 1 .

= - + -

� �
g = - -� �

� �

= - + -

                      (54) 

Здесь

1111 1111 1111
1 2 22

11 1111 1111 11111111 1111 1111

1111 1111
1 22 2

1111 1111 1111 1111 1111 1111

; 1 ;
224

; .
6 4

� �D D
= - = - +� �� �-- � �

D D
= - =

- -

   (55) 

Решения (54) для прогиба (0)
3 отличаются от аналогичного ре-

шения, полученного с применением асимптотической теории пластин
типа Кирхгофа — Лява [19]: 

2(0) 2
1 1 1 13[ ] 1 .= -                             (56) 

Отличие решений заключается в наличии в выражении (55) члена

2 1 11 ,- имеющего, согласно соотношениям (44), второй порядок

малости 2
2 .= k Только этот член в решении (54) зависит от

сдвиговых свойств пластины, поэтому лишь прогиб (0)
3 пластины

зависит от модуля сдвига 11 1313= < > и лишь прогиб различается

в асимптотической теории типа Тимошенко и Кирхгофа — Лява.  

Выражения (54) для продольной компоненты (0)
1 и выражения

для всех компонент напряжений совпадают для обеих теорий в дан-
ной задаче. 

Результаты численных расчетов Проведены сравнительные рас-
четы перемещений и напряжений в пластине с помощью асимптотиче-
ских теорий типа Тимошенко и Кирхгофа — Лява, а также трехмерным
конечно-элементным решением задачи. Для последнего было использо-
вано программное обеспечение собственной разработки Научно-
образовательного центра «Суперкомпьютерное инженерное моделиро-
вание и разработка программных комплексов» МГТУ им. Н.Э. Баумана
[29, 30] и программный комплекс ANSYS.
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Численные расчеты были проведены для двух трехслойных ком-
позитных пластин: «длинной», для которой малый параметр был вы-
бран равным 0,025k = и «короткой», для которой 0,07.k = Толщина

и ширина были выбраны равными 21 мм. Толщины слоев были

выбраны соответствующими сетке 4

1 1 3 1

2 42 14 2

� �
= - -� �
� �

по нор-

мальной координате .x

Свойства материалов слоев пластин представлены в таблице. 

Слой � 1 соответствует отрезку
1 1

, .
2 42

� �
x� - -� �� �

Давления �%

на верхней и нижней поверхностях пластины были выбраны следу-

ющими: 310 ГПа,-
+ =%

410 ГПа-
+ =% для «короткой» пластины и

410 ГПа,-
+ =%

510 ГПа-
+ =%  — для «длинной». 

Свойства материалов слоев пластин

�
слоя 1, ГПа 2 , ГПа 3 , ГПа 12 , ГПа 13 , ГПа 23 , ГПа 12n 13n 23n

1 14 14 5,3 1,8 0,75 0,75 0,08 0,14 0,15 

2 7 7 2,7 0,9 0,38 0,38 0,40 0,07 0,08 

3 21 21 8 2,7 1,13 1,13 0,12 0,21 0,23 

Решение трехмерной задачи осуществлено в комплексе конечно-
элементного моделирования ANSYS с применением 10-узлового тет-
раэдрального конечного элемента.  

На рис. 1–10 отражены полученные результаты расчетов. Отно-
сительные отклонения d вычислены в метрике Чебышева. Отклоне-

ние по прогибу 3 для «коротких» пластин (см. рис. 1) между трех-

мерным решением и решением по асимптотическим теориям пластин
типа Кирхгофа — Лява составляет 66,49 %,d = типа Тимошенко — 

16, 45 %.d = Отклонение по прогибу 3 для «длинных» пластин (см. 

рис. 2) между трехмерным решением и решением по асимптотическим
теориям пластин типа Кирхгофа — Лява составляет 14, 22 %,d = типа

Тимошенко — 8,29 %.d =

Отклонение по продольным перемещениям 1 для «коротких» 

пластин (см. рис. 3) между трехмерным решением и решением по
теориям пластин составляет 98,44 %.d = Отклонение по продольным

перемещениям 1 для «длинных» пластин (см. рис. 4) между трех-

мерным решением и решением по теориям пластин составляет
14,25 %.d =
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Рис. 1. Распределение прогиба 
(0)
3u  (мм) для  

«короткой» ( 0, 07)k =  пластины, полученное при 

расчете по асимптотическим теориям типа Тимо-
шенко ( ), Кирхгофа — Лява ( ) и трехмерной  

теории ( ) 
 

 

Рис. 2. Распределение прогиба 
(0)
3u  (мм) для 

«длинной» ( 0, 025)k =  пластины, полученное при 

расчете по асимптотическим теориям типа Тимо-
шенко ( ), Кирхгофа — Лява ( ) и трехмер- 

ной теории ( ) 
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Рис. 3. Распределение продольного перемещения 
(0)
1u  (мм) 

для «короткой» ( 0, 07)k = пластины на срединной по-

верхности, полученное при расчете по асимптотическим 
теориям   типа  Тимошенко  и  Кирхгофа  —  Лява  ( )  

и трехмерной теории ( ) 
 

 

Рис. 4. Распределение продольного перемещения 1u  (мм) 

для «длинной» ( 0, 025)k =  пластины на срединной по-

верхности, полученное при расчете по асимптотическим 
теориям   типа   Тимошенко   и  Кирхгофа  —  Лява  ( )  

и трехмерной теории ( ) 

 
 



�.�. Димитриенко, �.В. �рин 

32 

 

Рис. 5. Распределение напряжений 11s  (ГПа) по тол-

щине в сечении 1 0, 25=x  для «короткой» ( 0, 07)k =  

пластины, полученное при расчете по асимптотическим 
теориям   типа   Тимошенко,    Кирхгофа  —  Лява  ( )  

и трехмерной теории ( ) 
 

 

Рис. 6. Распределение напряжений 11s  (ГПа) по тол-

щине в сечении 1 0, 25=x  для «длинной» ( 0, 025)k =  

пластины, полученное при расчете по асимптотическим 
теориям   типа   Тимошенко,   Кирхгофа  —  Лява  ( )  

и трехмерной теории ( ) 
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Рис. 7. Распределение напряжений 13s  (ГПа) по тол-

щине в сечении 1 0, 25=x  для «короткой» ( 0, 07)k =  

пластины, полученное при расчете по асимптотическим 
теориям   типа   Тимошенко,   Кирхгофа   —  Лява  ( ) 

и трехмерной теории ( ) 
 

 

Рис. 8. Распределение напряжений 13s  (ГПа) по тол-

щине в сечении 1 0, 25=x  для «длинной» ( 0, 025)k =  

пластины, полученное при расчете по асимптотическим 
теориям   типа   Тимошенко,   Кирхгофа   —  Лява  ( ) 

и трехмерной теории ( ) 
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Рис. 9. Распределение напряжений 33s  (ГПа) по тол-

щине в сечении 1 0, 25=x  для «короткой» ( 0, 07)k =  

пластины, полученное при расчете по асимптотическим 
теориям   типа   Тимошенко,   Кирхгофа   —  Лява  ( ) 

и трехмерной теории ( ) 
 

 

Рис. 10. Распределение напряжений 33s  (ГПа) по тол-

щине в сечении 1 0, 25=x  для «длинной» ( 0, 025)k =  

пластины, полученное при расчете по асимптотическим 
теориям   типа   Тимошенко,   Кирхгофа   —  Лява  ( ) 

и трехмерной теории ( ) 
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Отклонение по напряжениям 11s для «коротких» пластин (см. 

рис. 5) между трехмерным решением и решением по теориям пла-
стин составляет 8, 43 %.d = Отклонение по напряжениям 11s для

«длинных» пластин (см. рис. 6) между трехмерным решением и ре-
шением по теориям пластин составляет 1,37 %.d =

Отклонение по напряжениям 13s для «коротких» пластин (см. 

рис. 7) между трехмерным решением и решением по теориям пла-
стин составляет 4,36 %.d = Отклонение по напряжениям 13s для

«длинных» пластин (см. рис. 8) между трехмерным решением и ре-
шением по теориям пластин составляет 0,05 %.d =

Отклонение по напряжениям 33s для «коротких» пластин (см. 

рис. 9) между трехмерным решением и решением по теориям пла-
стин составляет 9,14 %.d = Отклонение по напряжениям 33s для

«длинных» пластин (см. рис. 10) между трехмерным решением и ре-
шением по теориям пластин составляет 0,32 %.d =

Заключение Разработана асимптотическая теория тонких мно-
гослойных пластин типа Тимошенко с учетом конечной сдвиговой
жесткости слоев, построенная с помощью асимптотических разложе-
ний общих трехмерных уравнений теории упругости по малому гео-
метрическому параметру.

Показано, что уравнения теории пластин типа Тимошенко можно
получить при учете дополнительных членов более высокого порядка
в асимптотических разложениях в отличие от случая, когда учиты-
ваются только главные члены, который приводит к уравнениям тео-
рии пластин типа Кирхгофа — Лява.  

В отличие от классической теории пластин Тимошенко асимпто-
тическая теория типа Тимошенко позволяет с высокой точностью
вычислять все шесть компонент тензора напряжений в многослойной
пластине, для которых получены аналитические формулы.  

С помощью разработанного метода проведено численное моде-
лирование напряжений и перемещений в многослойной пластине при
изгибе равномерным давлением. Численные расчеты показали, что
разработанная асимптотическая теория типа Тимошенко позволяет
получить примерно одинаковую высокую точность расчета изгиб-
ных, сдвиговых и поперечных напряжений в сравнении с трехмер-
ным конечно-элементным решением, полученным для очень мелких
сеток, и асимптотической теорией типа Кирхгофа — Лява.  

Для прогиба теория типа Тимошенко дает лучший результат, чем
теория типа Кирхгофа — Лява, особенно для относительно «корот-
ких» пластин. Для продольного перемещения теория типа Тимошен-
ко дает хороший результат только для «длинных» пластин.  
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Разработанная асимптотическая теория может быть использована
для уточненного расчета перемещений и напряжений в многослой-
ных пластинах без применения 3D конечно-элементных методов. 
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