539.3 Finite element simulation of the rock stress-strain state under creep

Dimitrienko Y. I. (Bauman Moscow State Technical University), Yurin Y. V. (Bauman Moscow State Technical University)

ROCK, STRESS-STRAIN STATE, CREEP, FINITE ELEMENT METHOD, NUMERICAL SIMULATION


doi: 10.18698/2309-3684-2015-3-101118


A model for calculation of a rock stress-strain state considering creep is suggested. The algorithm for finite element solving the three-dimensional creep problem using finite-difference scheme of Euler's method with respect to time is presented. The specialized software is developed allowing the computer to build 3D-models of rock areas based on the initial series of 2D images, obtained with the seismic data, and to perform finite element calculation of variations in rock strain-stress state with time. Numerical simulation of rock stress-strain state was conducted on the example of a zone of the Astrakhan oil and gas field. It was found that there occurs rock mass rising in some points, and in the other points it can slope down with time. The creep rate of different layers is not the same — the highest values of the creep rate are realized in the layers of clay and sand, filled with fluid, which have the most notable creep properties. The developed algorithm and software for numerical simulation proved to be quite effective and can be applied to the study of rock stress-strain state.


[1] Guschenko O.I. Doklady RAN – Reports of RAS, 1996, vol. 346, no. 3, pp. 399–402.
[2] Zhalkovskiy N.D., Kuchay O.A., Muchnaya V.I. Geologiya i geofizika – Geology and Geophysics, 1995, vol. 36 (10), pp. 20–30.
[3] Leonov Yu.G. Geotektonika – Geotectonics, 1995, no. 6, pp. 3–21.
[4] Rebetskiy Yu.L. Mehanizm generactii ostatochikh napryazheniy i bolshikh gorizontalnikh szimayushikh napryazheniy v zemnoy kore vnutriplitovikh orogenov [The Mechanism of the Generation of Residual Stresses and Large Horizontal Compressive Stresses in the Earth Crust Intraplate Orogenes]. Problemy tectonofiziki. K 40-letiyu sozdaniya M.V. Gzovskim laboratorii tectonofiziki v IFERAS [On the 40th anniversary of creation the tectonophysics laboratory in the IPE RAS by M.V. Gzovskiy]. Мoscow, IFE RAS Publ., 2008, pp. 431–466.
[5] Rebetskiy Yu.L. Fizicheskaya mezomekhanika – Physical mesomehanics, 2008, vol. 11, no. 1, pp. 66–73.
[6] Gzovskiy M.V. Оsnovi tectonofiziki [Fundamentals of Tectonophysics]. Мoscow, Nauka Publ., 1975, 533 p.
[7] Van der Pluum B.A. Marble myionites in the Bancroft shear zone, Ontario, Canada: Microstructures and Deformation Mechanisms. Journal of Structural Geology, 1991, vol. 13, no. 10, pp. 1125–1135.
[8] Kayumov R.A., Shakirzyanov F.R. Ucheniye zapiski Kazanskogo universiteta. Ser. Physiko-Matematicheskie Nauki – Scientific notes of the Kazan University. Ser. Phys. and math., 2011, vol. 153, no. 4, pp. 67–75.
[9] Stephanov Yu.P. Fizicheskaya mezomekhanika – Physical mesomehanics, 2005, vol. 8, no. 3, pp. 129–142.
[10] Dimitrienko Yu.I. Mekhanika sploshnoi sredy [Continuum Mechanics]. In 4 vols. Vol. 4. Osnovy mekhaniki tverdogo tela [Fundamentals of Solid Mechanics]. Moscow, BMSTU Publ., 2013, 624 p.
[11] Dimitrienko Y.I., Gubareva E.A., Yurin Yu.V. Matematicheskoe modelirovanie i chislennye menody – Mathematical Modeling and Numerical Methods, 2014, no. 4, pp. 18–36.
[12] Dimitrienko Y.I., Gubareva E.A., Yurin Yu.V. Nauka i obrazovanie; electronnyy nauchno-tekhnicheskiy zhurnal – Science and Education: Electronic Scientific and technical Journal, No. 03, March 2015. Available at: http://technomag.bmstu.ru/doc/759406.html, DOI: 10.7463/0315.0759406
[13] Dimitrienko Yu.I. Mekhanika sploshnoi sredy [Continuum Mechanics]. In 4 vols. Vol. 1. Tenzornyi analiz [Tensor Analysis]. Moscow, BMSTU Publ., 367 p.
[14] Implicit Creep. Available at: http://ansys.net/ansys/papers/nonlinear/ conflong_creep.pdf
[15] Bakhvalov N.S., Zhidkov N.P., Kobelkov G.M. Chislennye metody [Numerical Methods]. Moscow, Binom Publ., 2001, pp. 363–375.
[16] Faleychik B.V. Оdnoshagovye metody chislennogo resheniya zadach Koshi [One-Step Methods for the Numerical Solution to the Cauchy Problem]. Minsk. BGU Publ., 2010, 42 p.
[17] Dautov P.Z., Karachevskiy M.M. Vvedeniye v teoriyu metoda konechnykh elementov [Introduction to the Finite-Element Theory]. Kazan. Kazan University Publ., 2004, 239 p.
[18] Dimitrienko Y.I., Gubareva E.A., Sborschikov S.V. Matematicheskoe modelirovanie i chislennye menody – Mathematical Modeling and Numerical Methods, 2014, no. 2, pp. 28–48.


Dimitrienko Y., Yurin Y. Finite element simulation of the rock stress-strain state under creep. Маthematical Modeling and Coтputational Methods, 2015, №3 (7), pp. 101-118



Download article

Количество скачиваний: 1018