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УДК 539.3 

Конечно-элементное моделирование  
напряженно-деформированного состояния  

горных пород с учетом ползучести  

© Ю.И. Димитриенко, Ю.В. Юрин  

МГТУ им. Н.Э. Баумана, Москва, 105005, Россия 

Предложена модель для расчета напряженно-деформированного состояния (НДС) 
осадочных горных пород с учетом их ползучести. Представлен алгоритм конечно-
элементного решения трехмерной задачи ползучести, использующий конечно-
разностные схемы метода Эйлера по времени. Разработано специализированное 
программное обеспечение, позволяющее строить компьютерные 3D-модели обла-
стей горных пород по исходным сериям 2D-изображений, полученных с помощью 
данных сейсморазведки, а также проводить конечно-элементный расчет измене-
ния НДС горных пород во времени. Проведено численное моделирование напряжен-
но-деформированного состояния горных пород на примере зоны из Астраханского 
нефтегазового месторождения. Установлено, что в одних точках происходит 
поднятие горной породы, в других — ее опускание. Скорость ползучести различ-
ных слоев различна — наибольшие значения скорости ползучести реализуются в 
глинистых слоях и в песчаных, заполненных жидкостью, которые обладают 
наиболее заметными свойствами ползучести. Разработанный алгоритм и про-
граммное обеспечение для численного моделирования показали себя достаточно 
эффективными и могут быть применены для исследования НДС горных пород. 

Ключевые слова: горные породы, напряженно-деформированное состояние, ползу-
честь горных пород, метод конечных элементов, численное моделирование  

Введение. Расчет напряженно-деформированного состояния (НДС) 
горных пород играет важную роль при решении ряда прикладных за-
дач геофизики: прогнозирование безопасности эксплуатации подзем-
ных выработок в процессе добычи полезных ископаемых, более каче-
ственный прогноз коллекторских свойств осадочных горных пород, а 
также прогнозирование геодинамики горных массивов и возможных 
землетрясений [1–6]. Сложность проблемы моделирования НДС гор-
ных пород заключается в отсутствии достоверных данных о физико-
механических свойствах горных пород, находящихся на больших глу-
бинах, а также о массовых и поверхностных внешних механических 
нагрузках, действующих на изучаемую область горной породы. Толь-
ко частично данные о физико-механических характерстиках отдель-
ных слоев горных пород могут быть получены по данным сейсмораз-
ведки. Как правило, методы обработки сейсмоданных позволяют 
определить одну или две упругие константы каждого слоя горного 
массива — скорости продольных и (или) поперечных волн, по кото-
рым пересчитываются модуль упругости и коэффициент Пуассона. 



Ю.И. Димитриенко, Ю.В. Юрин 

102 

Существуют методики экспериментально-расчетного определения 
упругих констант слоев горных пород с учетом их возможной анизо-
тропии. Однако для корректного определения НДС необходима ин-
формация о реологических свойствах горных пород, главным образом 
о деформациях ползучести, которая развивается даже при относитель-
но низких уровнях напряжений и является одной из причин геодина-
мического движения блоков горных пород [7]. Информацию о харак-
теристиках ползучести слоев горных пород в настоящее время обычно 
получают только косвенно: по результатам испытаний аналогов — 
приповерхностных слоев. Число публикаций, в которых приведены 
расчеты НДС горных пород с учетом ползучести, невелико [8, 9].  

Корректное задание граничных условий для задачи расчета НДС 
также составляет большую проблему. Для отдельного блока горного 
массива граничные условия зависят от общей тектонической обста-
новки в литосферной плите, определение которой, как правило, со-
ставляет не менее сложную задачу. Поэтому в настоящее время в ос-
новном используют модельное задание граничных условий, которое 
формулируется на основе обобщения экспериментальных данных — 
в виде задания тектонических горизонтальных напряжений, линейно 
изменяющихся по глубине горного массива [5].  

В настоящей статье изложены результаты работ по разработке 
алгоритма численного решения 3D-задач расчета НДС в горных по-
родах с учетом деформаций ползучести, а также по разработке соб-
ственного программного обеспечения, предназначенного для числен-
ного моделирования НДС в горных породах. 

 Постановка задачи расчета НДС горных пород с учетом пол-
зучести. Рассмотрим краевую трехмерную задачу термоползучести 
на основе теории течения [10]: 
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Здесь   — набла-оператор [11]; σ  — тензор напряжений;   — пе-
ременная плотность горной породы, зависящая от конкретного типа 
горной породы (известняк, песчаник, глина и т. п.); zg f e — век-
тор плотности силы тяжести; g  — ускорение свободного падения; 
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4С  — тензор модулей упругости; ε  — тензор малых деформаций;  
cε  — тензор деформаций ползучести; 0( )

  ε α  — тензор тепло-

вых деформаций; ( , )cF ε σ  — дважды непрерывно дифференцируемая 

в некоторой области 12G   тензорная функция, описывающая мо-
дель скоростей деформаций термоползучести; u  — вектор переме-

щений; eu  — заданный вектор перемещений; n  — вектор внешней 
нормали; es  — заданный вектор напряжений на части поверхности 
тела  , задающий тектонические напряжения; ze  — вектор базиса, 
ориентированный по направлению действия силы тяжести; α  — тен-
зор температурного расширения;   — знак тензорного произведе-
ния; ( )  — скалярное произведение. 

Вектор напряжений es  на границе блока горной породы, задаю-
щий тектонические напряжения, согласно [4] выберем линейно изме-
няющимся с глубиной горной породы: 

 ,e az s n  (2) 

где 45 10 Па/ мa   — экспериментальная константа, полученная по 
данным работы [4]; 3z x  — вертикальная координата (текущая глу-
бина) горной породы; n — вектор нормали. 

Слои горной породы будем считать изотропными, поэтому для 
них тензоры модулей упругости имеют следующий вид [10]:

 

4 2    С E E Δ , где ,   — константы Ламе;

 

E  — метрический 
тензор; Δ  — единичный тензор 4-го ранга. 

Деформации ползучести большинства горных пород, как прави-
ло, обнаруживают нелинейную зависимость от напряжений и явля-
ются необратимыми, для их расчета применим теорию пластического 
течения [10—12], в которой дополнительно учтено влияние первого 
инварианта тензора напряжений на скорость деформации ползучести: 
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где  1I  σ E σ  — первый инвариант тензора напряжений; u  — 

второй инвариант (интенсивность) тензора напряжений [11]; s ,  , 

1,r  2r  — константы ползучести. 

Вводя тензор упругих напряжений 4e  σ С ε , тензор напряже-

ний ползучести 4с с  σ С ε и тензор термонапряжений 4    σ С ε , 
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тензор напряжений может быть записан в виде следующего разложе-
ния: e c   σ σ σ σ .  

Температурное поле   будем считать известным, изменяющимся 
линейно с глубиной горной породы [6]:  

 0 1 0( ),
z

H
        (4) 

где 0 293 K;   1 305 K;   34 10 м.H    
Численный алгоритм решения задачи расчета НДС. Конечно-

элементный расчет НДС конструкций с учетом деформаций термо-
ползучести в настоящее время реализован в основных коммерческих 
программных пакетах, в том числе в ANSYS [13, 14]. Однако в боль-
шинстве случаев для решения нелинейных уравнений ползучести 
применяют явные или неявные методы, основанные на методе Эйле-
ра аппроксимации производных по времени. Метод Эйлера доста-
точно эффективен с точки зрения экономии оперативной памяти при 
проведении вычислений, но относительно затратен по времени вы-
числений и не всегда обеспечивает требуемую точность расчетов де-
формаций ползучести. 

Для применения метода Эйлера тензорное соотношение ползу-
чести (третье уравнение в (1)) рассмотрим в виде системы диффе-
ренциальных уравнений относительно тензора деформаций ползу-
чести cε  как функции от временного параметра  . Введем сетку по 
временному параметру: 0( 0, , )N NA T      с шагом ( )NStp A 

0 1 0 1 1( , , ).N N N             
Для начального шага ( 0m  ) на основе начального условия 

0
0c


ε  имеем следующую систему: 
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Из формулы для разложения тензора напряжений и указанного 
начального условия имеем следующие соотношения для тензоров на 
начальном шаге: 
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 (0) (0) (0); .c e   ε 0 σ σ σ   (6)  

Далее на m -м шаге ( 1Nm  ) имеем следующую вычислитель-
ную процедуру для метода Эйлера. 

1. Вычисление тензоров деформаций и напряжений ползучести 
m -го шага: 
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2. Решение краевой задачи и определение соответствующих тен-
зоров упругих напряжений: 
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Вычисление тензора напряжений 

 ( ) ( ) ( ) .m e m c m   σ σ σ σ  (9) 

Метод конечных элементов для численного решения краевых 
задач расчета НДС. Рассмотрим задачу (8) для m -го шага метода 

Эйлера, где ( )
2 ( )m

ub  u L , ( )
2( )m

b  S L . Будем предполагать, что 

тензор модулей упругости 4С  удовлетворяет условию положитель-
ной определенности [10], т. е. для всякого симметричного тензора 

второго ранга εсправедливо неравенство( 0  ) 4      ε С ε ε ε   
Умножив первое соотношение рассматриваемой системы (9) ска-

лярно на векторное поле 0 ( ) v V , получим 
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Применяя для первого интеграла в правой части формулу Остро-
градского и учитывая силовое граничное условие в системе, получим 
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       ( ) ( ) c( )def ( ) def ( ) .e m m m
bdV d dV
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Далее, подставляя определяющие соотношения, будем иметь 
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s sbdV d dV





  

         
 

  v С u v S v С ε ε  (12) 

Тогда под слабым решением краевой задачи на s -й стадии мето-
да Рунге — Кутты в пространстве Соболева (1)

2 ( )W  будем понимать 

такую вектор-функцию (1)( )
2 ( )m

s  u W , что если (1)( )
2 ( )m  w W  — 
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s   u w Z  и 

( )m
su  удовлетворяет последнему интегральному соотношению 

( )  v Z . Решение такой задачи существует и единственно [15]. 
Перейдем в последнем интегральном соотношении к матричной 

форме. Для этого запишем компоненты соответствующих тензоров и 
векторов в декартовых координатах [10—18]: 
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где n  — пространство столбцов размерности n . Также введем 
матрицу дифференциальных операторов D и матрицу модулей упру-
гости ( ,6,6)L C  [10]: 
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Тогда интегральное соотношение можно записать в следующем виде: 
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s sbDv CDu dV v S d Dv C dV





  

       
 

     (15) 

Слабое решение краевой задачи будем искать на основе метода ко-
нечных элементов (МКЭ). В качестве конечного элемента будет исполь-
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зован 10-узловой тетраэдр с квадратичной аппроксимацией. Введем да-
лее конечно-элементное пространство ( )h hF   в следующем виде: 

 3 30( ) : ( ) ( ) , ,h h h h h K K h KF f f f K T f        x x x  ,  (16) 

где : ( ,3,30)K K L    — матрица базисных аппроксимирующих 

функций (функций формы);  т1 1 1 10 10 10
1 2 3 1 2 3K K K K K K Kf f f f f f f   — 

значения вектор-функции hf  в узлах тетраэдра hK T  (называемые сте-
пенями свободы КЭ). Матрица (.)K имеет блочный вид: 

 11 22 33 44 12 13 14 23 24 34( ) ;

( ) ( ) ;

K

ij ijN E

           

 

x

x x
 

 
 ( ) 2 ( ) 1 , ;

( )
4 ( ) ( ), ,

i i
ij

i j

L L i j
N

L L i j

  


x x
x

x x
  (17) 

где ( ,3,3)E L   — единичная матрица; ( )iL x  — барицентрические 
координаты точки в тетраэдре hK T , построенные по его вершинам, 

5,i j .  
Пусть далее uh , h  — аппроксимация частей u и   границы 

,   полученная при триангуляции hT . В пространстве ( )h hF   вы-

делим подпространство  ( ) ( ) ( ) 0, .h h h h h h uh hZ f F f       x x  

Тогда схемой МКЭ-поиска приближенного решения ослабленной за-
дачи на s-й стадии метода Рунге — Кутты на регулярной триангуля-
ции hT  будем называть задачу поиска такой вектор-функции 

( ) ( )m
h hshu F  , что ( ) ( )( ) ( )m m

sh bhu ux x  при ( )h uhNd T x  (т. е. интер-

полирует вектор-функцию ( )m
bhu  на границе uh ) и для любой вектор-

функции ( )h h hv Z   справедливо соотношение 

       т т( ) ( )т ( ) .
h h h

m m с m
h h h ssh bhDv CDu dV v S d Dv C dV





  

       
 

     (18) 

Раскладывая интегралы по всей области h  на интегралы по ко-
нечным элементам и подставляя определение элементов простран-
ства ( )h hF  , получим 

 т ( )
( )

т

0;

;
h

m
K K Ks K

K T

K K K
K

v A u f

A B CB dV


   






 



Ю.И. Димитриенко, Ю.В. Юрин 

108 

 т ( ) т ( ) , ( ) ( ).
h

m с m
K K K s K Kbh

K K

f S d B C dV B D




 

          
 

  x x  (19) 

Матрица ( ,30,30)KA L   и вектор 30
Kf    представляет ло-

кальную матрицу жесткости и локальный вектор нагрузок соответ-
ственно. Пусть введена единая нумерация  1 30: , ,hT    степе-

ней свободы триангуляции (инъективная функция, ставящая в соот-
ветствие каждому конечному элементу (КЭ) hK T  кортеж номеров 
соответствующих ему степеней свободы), число которых в hT  обозна-

чим 3card( ( )).hN Nd T  Тогда введем матрицу ( , , )G
KA L N N  и век-

торы ( )
( ), , m GG G N

K K s Kf v u   : 

 

   

     ( )

, ( ), ( )
;

0, , ( )

, ( )
, , , .

0, ( )

N
i

p K i jG G j
K K

q

N

N
i

p K iG G m
K K s

A p K q K
A A

p q K

p K
f v u

p K

          

              (20) 

Построим далее на их основе следующую матрицу и векторы: 

 
h

G G
K

K T

A A


  , 
h

G G
K

K T
   .  (21)  

Тогда схема МКЭ может быть записана в виде 

  т ( )
( ) 0.m GG G G
sv A u f   

   (22)  

Далее, поскольку ( )h h hv Z  , то   0,G

p
v p I  , где I 

 ( ) : : ( ) 0 .b
uhhp K K T m K        Кроме того, компоненты 

 ( )m G
s

p
u  зафиксированы значениями ( )m

bhu  в узлах ( )h uhNd T  . Но 

тогда указанные компоненты могут быть исключены из векторов Gv  и 
( )m G
su (в результате получим векторы ( )G, ,G m N q

sv u     card( )q I ), а 

известные компоненты в ( )m G
su  могут быть перенесены в правую часть: 

        ( )

N
i ii pG G G G m G

s
pp I

f f f A u


     
 

   . (23)  

Тогда, исключив из матрицы GA  строки и столбцы, а из вектора 
Gf   строки с номерами p I (получив матрицу ( , , )GA L N q N q    
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и вектор G N qf    ) и учитывая произвольность вектора G N qv    , 
приходим к разрешающей системе линейных алгебраических уравнений 
(СЛАУ) схемы МКЭ: 

  ( )G .G m G
sA u f   (24) 

Семейство схем МКЭ при 0h  сходится к слабому решению 
краевой задачи [13]. Решение разрешающей СЛАУ в данной работе 
осуществляется на основе метода сопряженного градиента. 

Результаты численного моделирования. В качестве исходных 
данных для расчета НДС использованы данные сейсморазведки, 
представленные в форматах SEGY. Куб сейсмических данных разде-
лен на последовательность двумерных изображений исследуемого 
горного массива. Типичное двумерное изображение сейсмоданных 
приведено на рис. 1. В качестве примера реализации разработанных 
 

Рис. 1. Двумерное изображение сечения куба сейсмоданных  
Астраханского месторождения (данные ОАО ЦГЭ) 

методик выбрано Астраханское нефтегазовое месторождение. Экспе-
риментальные данные предоставлены ОАО «Центральная геофизиче-
ская экспедиция» (ОАО ЦГЭ). Для преобразования сейсмоданных  
в формат геометрических данных, позволяющих строить компьютер-
ную 3D-модель исследуемой области, разработано специализированное 
программное обеспечение, позволяющее проводить эти операции в по-
луавтоматизированном режиме, задавая поверхности раздела областей с 
помощью двумерных сплайнов. Компьютерная 3D-модель исследуемо-
го горного массива, представляющего часть (10×10 км в плане и 4 км по 
глубине) для Астраханского месторождения, построенная с помощью 
данного программного обеспечения, предсталена на рис. 2.  

Использование собственного программного обеспечения для ком-
пьютерной генерации исследуемых 3D-областей горного массива поз-
волило сгенерировать высококачественные конечно-элементные сетки, 
применяя для этого в полуавтоматизированном режиме генератор 
Tetgen, с последующим улучшением сетки в областях стыка областей.  
 



Ю.И. Димитриенко, Ю.В. Юрин 

110 

Рис. 2. Компьютерная 3D-модель исследуемого горного массива,  
представляющего часть Астраханского месторождения 

В качестве КЭ выбран четырехузловой тетраэдр. Пример КЭ-сетки для 
исследуемой области горного массива Астраханского месторождения 
приведена на рис. 3. Число КЭ в сетке составило 9,456 млн элементов и 
1,516 млн узлов.  

Рис. 3. КЭ-сетка для исследуемой области горного массива 
Астраханского месторождения 
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Исследуемый горный массив в рамках компьютерной 3D-модели 
был разделен на пять типов областей, которые на основании информа-
ции об их продольных скоростях звука были классифицированы как:  
1) известняк; 2) глина; 3) песок; 4) песчаник; насыщенный жидкостью;  
5) песчаник. Модуль упругости отдельных областей определен на осно-
вании данных сейсморазведки, плотность и коэффициент Пуассона — 
на основании характерных данных для представленных сред. Констан-
ты ползучести областей подобраны с использованием данных из [7]. 
Значения констант упругости и ползучести отдельных областей иссле-
дованного горного массива Астраханского месторождения приведены в 
таблице.  

Значения констант упругости и ползучести отдельных областей  
исследованного горного массива 

Материал 
Плот-

ность ,  

г/см3 

Модуль 
Юнга ,E  
ГПа 

Коэффи-
циент 

Пуассона 
  

Коэффи-
циент 

вязкости 
,  Гпа · с

Показа-
тель 

степени 

1r  

Показа-
тель 

степени 

2r  

Характер-
ные напря-
жения ,s  

ГПа 

Известняк 2,6 46,2 0,219 2  1010 1,75 0,2 105 
Глина 2,35 3,4 0,405 105 1,1 0,2 105 
Песок 1,6 0,179 0,405 2,5  106 1,3 0,2 105 
Песчаник, 
насыщен-
ный жидко-
стью 

2,25 13,283 0,153 4  105 1,3 0,2 105 

Песчаник 2,25 6,321 0,405 2  1011 1,3 0,2 105 
 
Расчеты НДС горных массивов на основе разработанного алгоритма 

проведены с помощью собственного программного обеспечения, разра-
ботанного в НОЦ «СИМПЛЕКС» МГТУ им. Н.Э. Баумана, на базе про-
граммной платформы SMCM. На рис. 4 показана 3D-картина верти-
кальных перемещений, м, ( ) (0)zp z zu u t u  , куба горного массива за 

счет деформаций ползучести. Перемещения распределены неравно-
мерно по слоям, существуют зоны локальных максимумов верти-
кальных перемещений, связанных с сильной искривленностью слоев 
горного массива.  

На рис. 5 приведены двумерные картины изменения вертикаль-
ных перемещений zpu  горного массива во времени. Несмотря на то 

что характер распределения перемещений zpu в целом на протяжении 

исследуемого периода времени (1 год) остается примерно одинако-
вым, абсолютные значения перемещений заметно изменяются.  
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Рис. 4. Картина вертикальных перемещений zpu  куба  
горного массива (верхний слой массива не показан) 

 
Рис. 5. Моделирование кинетики изменения поля вертикальных переме-

щений zpu  исследуемого блока горной породы: 

а — 1 месяц; б — 3 месяца; в — 7 месяцев; г — 1 год
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Графики изменения вертикальных перемещений zpu во времени в 

разных точках горного массива представлены на рис. 6. Установлено, 
что в некоторых точках происходит поднятие горной породы, а в не-
которых — опускание. На рис. 7 приведены графики изменения во 

времени значений интенсивности деформаций ползучести c
u .С тече-

нием времени деформации ползучести монотонно накапливаются во 
всех рассмотренных точках, но скорость ползучести их различна — 
наибольшие значения скорости ползучести реализуются в глинистых 
и в песчаных слоях, заполненных жидкостью, которые обладают 
наиболее заметными свойствами ползучести. 

Рис. 6. Изменение во времени вертикальных перемещений zpu   

исследуемого блока горной породы в шести различных точках 

Расчетные 3D-картины горизонтальных напряжений xx  и yy , 

Гпа, в рассматриваемом блоке горной породы представлены на рис. 8. 
Проведенные вычисления показывают, что напряжения xx  и yy  
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с увеличением глубины горной породы возрастают по модулю, явля-
ясь отрицательными по знаку (сжимающими). В приповерхностном 
слое напряжения xx  и yy в некоторых зонах меняют знак и являют-

ся положительными, хотя абсолютные значения напряжений в этих 
зонах относительно невелики.  

 

 
Рис. 7. Прогнозирование изменения интенсивности деформаций ползуче-

сти c
u  исследуемого блока горной породы в его различных точках 

 
Рис. 8. 3D-картины распределения полей нормальных напряжений xx   

и yy  в исследуемом блоке горной породы 

На рис. 9 показана картина распределения интенсивности u
напряжений в рассматриваемом блоке горной породы. В целом ин-
тенсивность напряжений в горной породе возрастает с увеличением 
глубины, однако максимумы интенсивности напряжений достигают-
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ся в областях с максимальным наклоном их границ (анитиклинали), 
поскольку в этих областях становятся положительными нормальные 
напряжения zz . Касательные напряжения xz  достигают максимума 
на границах областей неоднородностей.  

Рис. 9. 3D-картина распределения поля интенсивности  
напряжений u  в исследуемом блоке горной породы 

Заключение. Предложена модель для расчета напряженно-
деформированного состояния осадочных горных пород с учетом их 
ползучести. Предложен алгоритм КЭ-решения трехмерной задачи пол-
зучести, использующий конечно-разностные схемы Рунге — Кутты 
различного порядка по времени. Разработано специализированное 
программное обеспечение, позволяющее строить компьютерные 3D-
модели областей горных пород по исходным сериям 2D-изображений, 
полученных с помощью данных сейсморазведки, а также проводить 
расчет изменения НДС горных пород во времени. Проведено числен-
ное моделирование НДС горных пород на примере зоны из Астрахан-
ского нефтегазового месторождения. Установлено, что в некоторых 
точках происходит поднятие горной породы, а в некоторых — ее 
опускание. Скорость ползучести разных слоев различна — наиболь-
шие значения скорости ползучести реализуются в глинистых слоях и в 
песчаных, заполненных жидкостью, которые обладают наиболее за-
метными свойствами ползучести. Разработанный алгоритм и про-
граммное обеспечение для численного моделирования показали себя 
достаточно эффективными и могут быть применены для исследования 
НДС горных пород.  

Исследование выполнено за счет гранта Российского научного 
фонда (проект №14-19-00847). 



Ю.И. Димитриенко, Ю.В. Юрин 

116 

ЛИТЕРАТУРА 

[1] Гущенко О.И. Сейсмотектонический стресс-мониторинг литосферы 
(структурно-кинематический принцип и основные элементы алгоритма). 
Докл. РАН, 1996, т. 346, № 3, с. 399–402. 

[2] Жалковский Н.Д., Кучай О.А., Мучная В.И. Сейсмичность и некоторые 
характеристики напряженного состояния земной коры Алтай-Саянской 
области. Геология и геофизика, 1995, т. 36 (10), с. 20–30. 

[3] Леонов Ю.Г. Напряжения в литосфере и внутриплитная тектоника. Гео-
тектоника, 1995, № 6, с. 3–21. 

[4] Ребецкий Ю.Л. Механизм генерации остаточных напряжений и больших 
горизонтальных сжимающих напряжений в земной коре внутриплитовых 
орогенов. Проблемы тектонофизики. К 40-летию создания М.В. Гзовским 
лаборатории тектонофизики в ИФЗ РАН. Москва, ИФЗ РАН, 2008,  
с. 431–466. 

[5] Ребецкий Ю.Л. Механизм генерации тектонических напряжений в обла-
стях больших вертикальных движений землетрясений. Физическая мезо-
механика, 2008, т. 11, № 1, с. 66–73. 

[6] Гзовский М.В. Основы тектонофизики. Москва, Наука, 1975, 533 с. 
[7] Van der Pluum В.А. Marble myionites in the Bancroft shear zone, Ontario, 

Canada: microstructures and deformation mechanisms. J. of Structural Geology, 
1991, vol. 13, no. 10, pp. 1125−1135. 

[8] Каюмов Р.А., Шакирзянов Ф.Р. Моделирование поведения и оценка несу-
щей способности системы тонкостенная конструкция — грунт с учетом 
ползучести и деградации грунта. Ученые записки Казанского ун-та. Сер. 
Физико-математические науки, 2011, т. 153, № 4, с. 67–75.  

[9] Стефанов Ю.П. Некоторые особенности численного моделирования пове-
дения упруго-хрупкопластичных материалов. Физическая мезомеханика, 
2005, т. 8, № 3, с. 129–142. 

[10] Димитриенко Ю.И. Механика сплошной среды. В 4 т. Т. 4: Основы меха-
ники твердого тела. Москва, Изд-во МГТУ им. Н.Э. Баумана, 2013, 624 с. 

[11] Димитриенко Ю.И., Губарева Е.А., Юрин Ю.В. Асимптотическая теория 
термоползучести многослойных тонких пластин. Математическое моде-
лирование и численные методы, 2014, № 4, с. 18–36. 

[12] Димитриенко Ю. И., Губарева Е. А., Юрин Ю. В. Конечно-элементное мо-
делирование процессов термоползучести на основе методов Рунге — Кут-
ты. Наука и образование, 2015, № 3. doi: 10.7463/0315.0759406 
http://technomag.bmstu.ru/doc/759406.html 

[13] Димитриенко Ю.И. Механика сплошной среды. В 4 т. Т. 1: Тензорный ана-
лиз. Москва, Изд-во МГТУ им. Н.Э. Баумана, 2011, 367 с. 

[14] Implicit Creep. URL: http://ansys.net/ansys/ papers/nonlinear/ con-
flong_creep.pdf 

[15] Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы. Москва, 
Бином, 2001, с. 363–375. 

[16] Фалейчик Б.В. Одношаговые методы численного решения задачи Коши. 
Минск, БГУ, 2010, 42 с. 

[17] Даутов Р.З., Карчевский М.М. Введение в теорию метода конечных эле-
ментов. Казань, КГУ, 2004, 239 с. 

[18] Димитриенко Ю.И., Губарева Е.А., Сборщиков С.В. Конечно-элементное 
моделирование эффективных вязкоупругих свойств однонаправленных 
композиционных материалов. Математическое моделирование и числен-
ные методы, 2014, № 2, с. 28–49. 

Статья поступила в редакцию 30.05.2015 



Конечно-элементное моделирование напряженно-деформированного состояния… 

117 

Ссылку на эту статью просим оформлять следующим образом: 
Димитриенко Ю.И., Юрин Ю.В. Конечно-элементное моделирование 

напряженно-деформированного состояния горных пород с учетом ползучести. 
Математическое моделирование и численные методы, 2015, № 3, с. 101–118. 

  
Димитриенко Юрий Иванович родился в 1962 г., окончил МГУ им. М.В. Ломо-
носова в 1984 г. Д-р физ.-мат. наук, профессор, директор Научно-образовательного 
центра «Суперкомпьютерное инженерное моделирование и разработка програм-
мных комплексов» МГТУ им. Н.Э. Баумана, заведующий кафедрой «Вычислитель-
ная математика и математическая физика» МГТУ им. Н.Э. Баумана. Автор более 
300 научных работ в области механики сплошных сред, вычислительной механики, 
механики и термомеханики композитов, математического моделирования в науке о 
материалах, вычислительной газодинамики. e-mail: dimit.bmstu@gmail.com 
 
Юрин Юрий Викторович родился в 1988 г., окончил МГТУ им. Н.Э. Баумана в 
2012 г. Аспирант кафедры «Вычислительная математика и математическая физика» 
МГТУ им. Н.Э. Баумана. Автор 10 научных работ в области вычислительной мате-
матики и механики. e-mail: yvyurin@yandex.ru 

Finite element simulation of the rock stress-strain  
state under creep 

© Yu.I. Dimitrienko, Yu.V. Yurin 

Bauman Moscow State Technical University, Moscow, 105005, Russia  

A model for calculation of a rock stress-strain state considering creep is suggested. The algo-
rithm for finite element solving the three-dimensional creep problem using finite-difference 
scheme of Euler's method with respect to time is presented. The specialized software is devel-
oped allowing the computer to build 3D-models of rock areas based on the initial series of 2D 
images, obtained with the seismic data, and to perform finite element calculation of variations 
in rock strain-stress state with time. Numerical simulation of rock stress-strain state was con-
ducted on the example of a zone of the Astrakhan oil and gas field. It was found that there 
occurs rock mass rising in some points, and in the other points it can slope down with time. 
The creep rate of different layers is not the same — the highest values of the creep rate are 
realized in the layers of clay and sand, filled with fluid, which have the most notable creep 
properties. The developed algorithm and software for numerical simulation proved to be quite 
effective and can be applied to the study of rock stress-strain state. 

Keywords: rock, stress-strain state, creep, finite element method, numerical simulation.  
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