539.3 Modeling of thermal stresses in composite shells based on asymptotic theory. Part 2. Calculation of cylindrical shells

Dimitrienko Y. I. (Bauman Moscow State Technical University), Gubareva E. A. (Bauman Moscow State Technical University), Pichugina A. Y. (Bauman Moscow State Technical University), Bel’kova K. V. (Bauman Moscow State Technical University), Borin D. M. (Bauman Moscow State Technical University)


doi: 10.18698/2309-3684-2022-4-330

The general asymptotic theory of thin multilayer shells developed by the authors earlier in Part 1 of this study is applied to cylindrical anisotropic thermoelastic shells. It is shown that for cylindrical shells the general theory is substantially simplified: general two-dimensional averaged thermoelasticity equations for multilayer shells are obtained. These equations are similar to the classical equations of cylindrical shells in the Kirchhoff-Love theory, but they are obtained in a completely different way: on the basis of only an asymptotic analysis of the general three-dimensional equations of the theory of thermoelasticity. No hypotheses regarding the distribution of displacements or stresses over the thickness are used in this theory, which makes it logically consistent. In addition, the developed theory makes it possible to obtain explicit analytical expressions for all 6 components of the stress tensor in cylindrical anisotropic shells. Explicit expressions are obtained for all tensor constants included in these stress formulas. An example of calculating thermal stresses in a cylindrical composite shell with axisymmetric bending due to the combined action of external pressure and one-sided non-stationary heating is given. An example of a layered-fiber 4-layer shell with different angles of helical winding of reinforcing fibers is considered. It is shown that the developed one allows one to study in detail such complex effects as the formation of significant transverse thermal stresses during heating, which significantly exceed the level of interlayer shear stresses, which are traditionally considered the most dangerous for layered composites.

Alfutov N.A., Zinoviev P.A., Popov B.G. Raschet mnogoslojnyh plastin I obolochek iz kompozicionnyh materialov [Calculation of multilayer plates and shells made of composite materials]. Moscow, Mashinostroenie Publ., 1984, 264 p.
Agalovyan L.A. Asimptoticheskaya teoriya anizotropnyh plastin i obolochek [Asymptotic theory of anisotropic plates and shells]. Moscow, Nauka Publ., Fizmatlit Publ., 1997, 414 p.
Ambartsumyan S.A. Teoriya anizotropnyh obolochek [Theory of anisotropic shells]. Moscow, Fizmatgiz Publ., 1961, 384 p.
Bakulin V.N. Metody optimal'nogo proektirovaniya i raschyota kompozicionnyh konstrukcij. Tom 1 [Methods of optimal design and calculation of composite structures. Volume 1]. Moscow, Fizmatlit Publ., 2008, 256 p.
Belkin A.E., Gavryushin S.S. Raschet plastin metodom konechnyh elementov: ucheb. posobie dlya vuzov [Calculation of plates by the finite element method: textbook. manual for universities]. Moscow, BMSTU Publ., 2008, 232 p.
Biderman V.L. Mekhanika tonkostennyh konstrukcij [Mechanics of thin-walled structures]. Moscow, Mashinostroenie Publ., 1977, 488 p.
Bolotin V.V., Novikov Yu.N. Mekhanika mnogoslojnyh konstrukcij [Mechanics of multilayer structures]. Moscow, Mashinostroenie Publ., 1980, 375 p.
Bolshakov V.I., Andrianov I.V., Danishevsky V.V. Asimptoticheskie metody rascheta kompozitnyh materialov s uchetom vnutrennej struktury [Asymptotic methods for calculating composite materials taking into account the internal structure]. Dnepropetrovsk, Porogi Publ., 2008, 197 p.
Vasiliev V.V. Mekhanika konstrukcii iz kompozicionnyh materialov [Mechanics of structures made of composite materials]. Moscow, Mashinostroenie Publ., 1988, 271 p.
Vasiliev V.V., Lurie S.A. On the problem of constructing non-classical plate theories. Mechanics of Solids, 1990, no. 2, pp. 158–167.
Vildeman V.E., Sokolkin Yu.V., Tashkinov A.A. Mekhanika neuprugogo deformirovaniya i razrusheniya kompozitsionnykh materialov [Mechanics of inelastic deformation and destruction of composite materials]. Moscow, Nauka Publ., 1997, 288 p.
Goldenweiser A.L. Teoriya tonkih uprugih obolochek [Theory of thin elastic shells]. Moscow, Nauka Publ., 1976, 512 p.
Gorbachev V.I., Kabanova L.A. Formulation of problems in the general Kirchhoff-Love theory of inhomogeneous anisotropic plates. Moscow University Mechanics Bulletin, 2018, vol. 73, no. 3, pp. 60–66.
Dimitrienko Yu.I. Mekhanika sploshnoy sredy. Tom 4. Osnovy mekhaniki tverdogo tela [Continuum Mechanics. Vol. 4. Fundamentals of solid mechanics]. Moscow, BMSTU Publ., 2013, 624 p.
Dimitrienko Yu.I. Thermomechanics of composite structures under high temperatures. Springer, 2016, 434 p.
Elpatyevsky A.N., Vasiliev V.V. Prochnost' cilindricheskih obolochek iz armirovannyh materialov [Strength of cylindrical shells made of reinforced materials]. Moscow, Mashinostroenie Publ., 1972, 168 p.
Vasiliev V.V., Tarnopolsky Yu.M. Compozicionnye materialy: spravochnik[Composite materials: handbook]. Moscow, Mashinostroenie Publ., 1989, 510 p.
Sendeckyj G.P. Mechanics of composite materials: composite materials. Volume 2. New York and London, Academic Press, 1974, 520 p.
Lehnitsky S.G. Anizotropnye plastinki [Anisotropic plates]. Moscow, FizmatgizPubl., 1957, 463 p.
Lurie A.I. Statika tonkostennyh uprugih obolochek [Statics of thin-walled elastic shells]. Moscow, Gostekhizdat Publ., 1947, 252 p.
Timoshenko S.P., Woinowsky-Krieger S. Theory of Plates and Shells. New York, McGrawHill Publ., 1959, 595 p.
Lyav A. Matematicheskaya teoriya uprugosti [Mathematical theory of elasticity]. Moscow, ONTI Publ., 1935, 674 p.
Novozhilov V.V. Teoriya tonkih obolochek [Theory of thin shells]. Leningrad, Sudpromgiz Publ., 1962, 432 p.
Manevich L.I., Pavlenko A.V., Koblik S.G. Asimptoticheskie metody v teorii uprugosti ortotropnogo tela [Asymptotic methods in the theory of elasticity of an orthotropic body]. Kiev, Vishcha shkola Publ., 1982, 153 p.
Nazarov S.A. Asymptotic analysis of an arbitrary anisotropic plate of variable thickness (sloping shell). Sbornik: Mathematics, 2000, vol. 191, iss. 7, pp. 1075–1106.
Sheshenin S.V. Asymptotic analysis of plates with periodic cross–sections. Mechanics of Solids, 2006, vol. 41, iss. 6, pp. 57–63.
Sheshenin S.V., Skoptsov K.A. Theory of plates based on the method of asymptotic decompositions. Маthematical Modeling and Coтputational Methods, 2014, no. 2, pp. 49–61.
Aboudi J., Pindera M.J., Arnold S.M. Microstructural optimization of functionally graded composites subjected to a thermal gradient via the coupled higherorder theory. Composites Part B: Engineering, 1997, vol. 28, iss. 1–2, pp. 93–108.
Kalamkarov A.L., Kolpakov A.G. Analysis, design and optimization of composite structures. New York, John Wiley and Sons, 1997, 368 p.
Kohn R.V., Vogelius M. A new model for thin plates with rapidly varying thickness. International Journal of Solids and Structures, 1984, vol. 20, iss. 4, pp. 333–350.
Kolpakov A.G. Stressed composite structures: Homogenized models for thin-walled non-homogeneous structures with initial stresses. Berlin, Springer-Verlag, 2004, 228 p.
Lewiński T. Homogenizing stiffnesses of plates with periodic structure. International Journal of Solids and Structures, 1992, vol. 29, iss. 3, pp. 309–326.
Lewinski T., Telega J.J. Plates, laminates and shells. Asymptotic analysis and homogenization. World Scientific, 2000, 768 p.
Dimitrienko Yu.I. Asymptotic theory of multilayer thin plates. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2012, no. 3, pp. 86–99.
Dimitrienko Y. I. Gubareva E.A., Pichugina A.E. Modeling of the stresses in thin composite cylindrical shells based on the asymptotic theory. Маthematical Modeling and Computational Methods, 2018, no. 3, pp. 114–132.
Dimitrienko Y. I. Gubareva E.A., Pichugina A.E. Thermal stress modeling in composite shells based on asymptotic theory. Part 1. General shell theory. Маthematical Modeling and Computational Methods, 2020, no. 4, pp. 84–110.
Dimitrienko Y.I., Gubareva E.A., Sborschikov S.V. Asymptotic theory of constructive-orthotropic plates with two-periodic structures. Маthematical Modeling and Computational Methods, 2014, no. 1, pp. 36–56.
Dimitrienko Yu.I., Gubareva E.A., Yurin Yu.V. Explicit formulas for the calculation of the complete tensor of the stresses in the monoclinic thin composite shells based on the asymptotic homogenization method. Engineering Journal: Science and Innovation: Electronic Science and Engineering Publication, 2016, no. 12 (60), pp. 1–25.
Dimitrienko Yu.I., Yurin Yu.V. Timoshenko-type asymptotic theory for thin multi-layered plates shells. Маthematical Modeling and Computational Methods, 2018, no. 1, pp. 16–40.
Dimitrienko Yu.I., Yakovlev D.O. The asymptotic theory of thermoelasticity of multilayer composite plates. Composites: Mechanics, Computations, Applications, 2015, vol. 6. iss. 1, pp. 13–51.
Dimitrienko Yu.I., Yakovlev D.O. Comparison analysis of asymptotic theory of multilayer composite plates and three-dimentional theory of elasticity. Engineering Journal: Science and Innovation: Electronic Science and Engineering Publication, 2013, no. 7 (19), pp. 1–20.
Dimitrienko Yu.I. Tenzornoe ischislenie [Tensor calculus]. Moscow, Vysshaya shkola Publ., 2001, 575 p.

Димитриенко Ю.И., Губарева Е.А., Пичугина А.Е., Белькова К.В., Борин Д.М. Моделирование термонапряжений в композитных оболочках на основе асимптотической теории. Часть 2. Расчет цилиндрических оболочек. Математическое моделирование и численные методы, 2022, № 3, с. 3–30

Download article

Количество скачиваний: 224