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Разработанная авторами ранее в первой части данного исследования общая 

асимптотическая теория тонких многослойных оболочек применяется для цилин-

дрических анизотропных термоупругих оболочек. Показано, что для цилиндриче-

ских оболочек общая теория существенно упрощается: получены общие                          

двумерные осредненные уравнения термоупругости многослойных оболочек. Эти 

уравнения подобны классическим уравнениям цилиндрических оболочек в теории 

Кирхгофа–Лява, однако они получены совершенно иным способом: на основе                    

только асимптотического анализа общих трехмерных уравнений теории термо-

упругости. Никакие гипотезы относительно распределения перемещений или 

напряжений по толщине не используются в данной теории, что делает ее логиче-

ски непротиворечивой. Кроме того, разработанная теория позволяет получить 

явные аналитические выражения для всех 6 компонент тензора напряжений                     

в цилиндрических анизотропных оболочках. Получены явные выражения для всех 

тензорных констант, входящих в эти формулы для напряжений. Приведен пример 

расчета термонапряжений в цилиндрической композитной оболочке при осесим-

метричном изгибе, обусловленном совместным действием внешнего давления и 

одностороннего нестационарного нагрева. Рассмотрен пример слоисто-

волокнистой четырехслойной оболочки, с различными углами спиральной намотки 

армирующих волокон. Показано, что разработанная позволяет детально исследо-

вать такие сложные эффекты, как образование значительных поперечных          

термонапряжений при нагреве, которые значительно превышают уровень                         

напряжений межслойного сдвига, традиционно считающихся наиболее опасными 

для слоистых композитов.  

 

Ключевые слова: асимптотическая теория, термоупругость, многослойные               

цилиндрические оболочки, композиты, тензор напряжений, оболочки типа 

Кирхгофа — Лява 

  

Введение. Тонкостенные оболочки из композиционных материа-
лов широко применяются в современной технике. Несмотря на                      
появление в последнее время мощных вычислительных средств,                
позволяющих решать задачи теории упругости и термоупругости в 
общей трехмерной постановке для конструкций сложной формы,              
интерес к решению задач в двумерной постановке для оболочек не 
пропадает. В настоящее время существует большое число различных 
теорий оболочек [1–23] и др., в которых используются некоторая                           
система допущений относительно характера распределения переме-
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щений и деформаций или напряжений по толщине оболочки.  
Наибольшие сложности при расчете композитных оболочек                          
возникают с определением компонент тензора напряжений, особенно 
напряжений межслойных сдвигов и поперечных нормальных напря-
жений.  Для некоторых классов прикладных задач, таких как расчет 
термонапряжений в композитных оболочках при неравномерном по 
толщине нестационарном нагреве [15], расчет теплозащитных             
элементов конструкций [15], расчет диссипации энергии конструк-
ций и других задач, необходим детальный анализ всех 6 полей 
напряжений. По видимому наиболее перспективным на сегодняшний 
день для построения логически непротиворечивой теории пластин и                   
оболочек, сохраняющим все преимущества классических теорий 
Кирхгофа–Лява и Тимошенко, и позволяющим достаточно точно        
вычислять все 6 компонент тензора напряжений, являются асимпто-
тические теории пластин и оболочек [2, 8, 24–33], в которых исполь-
зуются асимптотические разложения исходных трехмерных                        
уравнений теории упругости по малому геометрическому параметру, 
представляющему отношение толщины оболочки к ее характерному 
размеру в плане. В работах [36–41] разработана асимптотическая 
теория многослойных, в том числе композитных пластин и оболочек, 
в который без каких-либо гипотез относительно распределения                   
перемещений или напряжений по толщине получены явные матема-
тически обоснованное выражения для всех шести компонент тензора 
напряжений. В работе [36] эта теория обобщена на случай                     
тонкостенных оболочек в произвольных ортогональных криволиней-
ных координатах. Целью настоящей статьи является применение 
этой общей теории для важного частного случая цилиндрических  
термоупругих оболочек и решение частной задачи об осесимметрич-
ном изгибе цилиндрической оболочки при одновременном                         
воздействии одностороннего нестационарного нагрева. 

Геометрические допущения для цилиндрических оболочек. 
Рассмотрим случай цилиндрических оболочек, когда срединная                

поверхность 0  оболочки является цилиндром радиуса R  и длиной 

0L , обозначим h  — толщину оболочки. Введем цилиндрическую    

систему координат z , s , r  с началом координат O  — одном из        

торцов оболочки, где s R  — длина дуги окружной координаты, а 

  — угол, z  — радиальная координата. 

Введем безразмерные цилиндрические координаты iX , выбирая 
в качестве характерного размера L  — радиус R  (рис. 1): 

 1 2 3/ , , ( / 1).X z R X X r R      (1) 

Введем малый параметр 
0/ 1h L æ  и локальную координату 

  по толщине оболочки по формуле: 
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Рис. 1. Цилиндрическая оболочка 

 

Внутренняя и внешняя поверхности оболочки 
3  имеют коор-

динаты 0,5   . 

Для тонкой оболочки в цилиндрических координатах безраз-

мерные параметры Ламе H , параметры A  первой квадратичной 

формы срединной поверхности [14, 42] и их производные 

/3

H
H 








 и ,H   имеют следующий вид [14]: 
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0, , 1, 2 ,
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k

  

 
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 

  

  

  

 
  

 
  

 

æ

  (3) 

здесь k  — безразмерные главные кривизны срединной поверхности, 

а ,A   — обозначение частных производных по X  ,  1,2  . 

Осредненная система уравнений теории термоупругости         

цилиндрических оболочек.  С учетом (3) общие кинематические 

соотношения [36] для тангенциальных деформаций (0)

IJ  [36] средин-

ной поверхности цилиндрических оболочек принимают вид: 

 
(0) (0) (0) (0) (0) (0) (0) (0)

11 1,1 22 2,2 3 12 1,2 2,1, , 2 ,u u u u u         (4) 

а общие соотношения для искривлений  IJ  срединной поверхно-

сти цилиндрических оболочек принимают такой вид [37] 



R
3X

2X

 0

3u

 0

3u 1X

p

p
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 (0) (0) (0) (0) (0)

11 3,11 22 3,22 2,2 12 3,12 2,1

1
, , .

2
u u u u u            (5) 

Здесь обозначены (0)

iu  — компоненты вектора перемещений средин-

ной поверхности оболочки в нулевом приближении по параметру æ  

[36]. 

Осредненная система уравнений равновесия [36] для случая               

цилиндрических оболочек, с учетом (3) имеет следующий вид 

 

11,1 12,2 1

22,2 12,1 2 2

11,1 12,2 1 1

22,2 12,1 2 2

1 ,1 2 ,2 22 3

0,

0,

0,

0,

0.

T T F

T T Q F

M M Q m

M M Q m

Q Q T F p

   


   


   


   
     

  (6) 

Здесь , ,IJ IJ IT M Q  — усилия, моменты и перерезывающие силы в 

оболочке, ,i IF m   — компоненты  заданных векторов массовых сил и 

моментов,  , , , 1,2I J K L ,    , , , 1,2,3i j k l  , 2p p  æ , 

p p p    , а p
 — заданные давления на внешних поверхностях 

3 . 

Определяющие соотношения ((128) из [36]), связывающие          
усилия, моменты и перерезывающие силы с деформациями и искрив-

лениями срединной поверхности (0) ,KL KL  , для цилиндрической        

оболочки имеют вид  

 (0) ,T

IJ IJKL KL IJKL KL IJT C B T      (7) 

 (0) ,T

IJ IJKL KL IJKL KL IJM B D M      (8) 

где обозначены IJKLC   — мембранные жесткости оболочки, IJKLB , 

IJKLB  — смешанные жесткости, IJKLD  — изгибные жесткости, 

,T T

IJ IJT M  — тепловые усилия и моменты, которые определяются по 

формулам (131) из [36] 

 

(0) (0)

(0) 2 2 (0)

, ,

,   ,

, .

IJKL IJKL IJKL IJKL

IJKL IJKL IJKL IJKL

T T T T

IJ IJ IJ IJ

C C B C

B C D C

T M



 

 

    

     

    

æ

æ æ

æ

  (9) 

Здесь также обозначены компоненты (0)

IJklC  — приведенного                      

тензора модулей упругости слоев оболочки  
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 (0) 1

33 3 3 3333 33, ,IJkl IJkl IJ kl kl klC C C Z Z C C     (10) 

где 
ijklC  — компоненты  тензора модулей упругости слоев оболочки, 

зависящие от  . 

В выражениях (9) и (10) и далее применяются обозначения для 
следующих интегральных операторов [36, 39]: 

 

0,5

0,5

0,5 0,5

0,5

( ) ,

( ) ( ) ,

{ } ( ( ) ) .

f f d

f f d f d

f f f d

 







 

   

 



 



 

     

   



 



  (11) 

Тангенциальные компоненты тензора тепловых напряжений в 

(10), с точностью до главных членов относительно параметра æ ,   
вычисляются по формулам  

 (0) (0) (0) (0)

0, ( ),T T T

IJ IJkl kl ij ijC          (12) 

где (0)T

ij  — компоненты тензора тепловых деформаций, ij  —              

компоненты тензора теплового расширения слоев, 
 0

  — значение 
безразмерной температуры в нулевом приближении. 

Система осредненных уравнений (4)–(6), (7), (8) для цилиндриче-
ских композитных многослойных оболочек состоит из пяти уравне-

ний относительно пяти неизвестных функций (0) (0) (0)

1 2 3, ,u u u  и 
1 2,Q Q . 

Для определения температуры 
 0

  необходимо решить задачу 
теплопроводности в нулевом приближении ((133) из [36]), записанная 
в безразмерном виде) 

 

(0)
(0)

33 /3 /3

0
(0) (0)

3 33 /3

( ) ,
Fo

: , ( ),

0 : 1.

v

T

e e e

с

t

q q

t

 
 

    


    






    

 

  (13) 

Здесь обозначены: T  — коэффициенты теплообмена на внешней и 

внутренней поверхностях оболочки, e   — температура внешней 

среды на внешней и внутренней поверхностях оболочки, 33  —      

коэффициенты поперечной теплопроводности слоев,   —                    

плотности, vс  — удельные теплоемкости слоев, 0Fo  — критерий 

Фурье. 
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Соотношения для компонент тензора напряжений в цилин-
дрических оболочках. После решения двумерной системы уравне-
ний (5)–(9) все шесть напряжений в слоях оболочки вычисляются по 
явным аналитическим формулам ((112), (115), (118) из [36]) 

 (1) (0) (0)ˆ ˆ ,T

IJ IJKL KL IJKL KL IJС C        (14) 

 (2) (0) (2) (0)

3 3 3 , 3 3 , 3
ˆ ˆ ˆ ˆ ,T

KL KL KLJ KL J KL KL KLJ KL JC R N V                  (15) 

 

  3 (3) (0) (3) (0)

33 33 33 ,

(3) (0) (3)

33 , 33

(3) (3) (3) (2)

33 , 33 , 33

ˆ ˆ0,5

ˆ ˆ

ˆ ˆ ˆ .

KL KL KLJ KL J

KLJM KL JM KL KL

T

KLM KL M KLMN KL MN KL KL

p p C R

E N

V U W

   

 

   

       

  

   

æ

  (16) 

Выражения для тензоров, участвующих в формулах (14)–(16), 
представлены формулами (114) из [36] 

 (1) (1)

3 3 33 33, ,T T T T

     æ æ   (17) 

 (1) (0) (0) (0)ˆ ˆ, ,IJKL IJKL IJKL IJKLС C C C = æ   (18) 

 (2) (1) (2) (1)

3 3 3
ˆ ˆ, ,KL KL KLJ KLJC C R R   = æ æ   (19) 

 2 2

3 3 3 3
ˆ ˆ, ,KL KL KLJ KLJN N V V   = æ æ   

 (3) (1) 2 (2) 3 (3)

33 33 33 33
ˆ ,KL KL KL KLC C C C = æ æ æ   (20) 

 

(3) 2 (2) 3 (3) (3) 2 (2) 3 (3)

33 33 33 33 33 33

(3) 2 (2) 3 (3) (3) 3 (3)

33 33 33 33 33

(3) 3 (3) (3) 3 (3)

33 33

ˆ ˆ, ,

ˆ ˆ, ,

ˆ ˆ, .

KLJ KLJ KLJ KLJM KLJM KLJM

KL KL KL KLM KLM

KLMN KLMN KL KL

R R R E E E

N N N V V

U U W W

  

  

 

æ æ = æ æ

æ æ æ

æ æ

  

Тепловые напряжения первого приближения (17) ((85) из [36]), 
которые для цилиндрических оболочек принимают вид 

 

(1) (0) (0) (0) (0)

3 , ,

(1) (0) (0)

33 22

,

.

{ } { }

{ }

T T T

kl kl kl kl

T T

kl kl

C C

C

      



  

 

  


  (21) 

Для тензоров первого приближения (1) (1) (1) (1)

3 33, , , ,KL KL KLJ IJKLC C R С   

3 3, ,KL KLJN V   входящих в (18), имеют место выражения (83), (90) из 

[36], для цилиндрических оболочек эти выражения принимают вид  

 

(1) (1) (0) (1) (0) (0)

3 33 22 3 22

(1) (0) (0)

3

(0) (0)

3

0, , ,

, 0,

,

{ } { }

{ } { }

{ } { }

KL KL KL IJKL IJMN MNKL IJ KL

KLJ KL J KL J KL

KLJ KL J KL J

C C C С C Z C

R C C N

V C C

  

       

      

 

   

    

  

 

  (22) 

где компоненты тензора 
MNKL  имеют следующий вид: 
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 11 22 3 120, , 0.KL KL KL KLZ            (23) 

Для тензоров второго приближения, входящих в формулы (20), 

имеют место выражения (96) из [36], для цилиндрических оболочек 

эти выражения принимают вид 

 

(2) (1) (2) (2) (0) (2) (2)

33 22 3 22 22 3 33

(2) (1) (1)

33 13 1 23 2

(2) (1) (1)

13 11 1 12 2

(2) (1) (1) (

23 22 2 12 1 2

, 0, ,

0,

,

{ }

{ } { }

{ } { }

{ } { } {

KL KL KL IJKL IJ KL IJ KL

KLJ KL J KL J

KLJ KL J KL J

KLJ KL J KL J KLJ

C C C C C Z C

R C C

R С С

R С С R

 

 

 

 

 

 

 

    

  

 

   1) (2)

(2) (1) (1)

33 1 1 2 2

(0) (2) (2)

3 33

(2) (0) (0) (2) (2)

33 22 3 33

, 0,

,

,

, ,

}

{ } { }

{ }

IJKLM

KLJM KLJ M KLJ M

IJKLMN IJSP SPKLMN IJ KLMN

KL KL IJKL IJSP SPKL IJ KL

R

E R R

E C K Z E

N C N C L Z N



 



 





 

 

  

  (24) 

где, согласно [37]  

 

(3) (2)

33 22

(3) (2) (2) (2)

33 13 1 23 2 22

(3) (2) (2)

33 13 1 23 2 22

(3)

33 22

(3)

33 13 1 23 2

(3)

33 1

,

0,

,

,

0,

{ }

{ } { } { }

{ } { } { }

{ }

{ } { }

{

KL KL

KLJ KL J KL J KLJ

KLJM KLJ M KLJ M KLJM

KL KL

KLM KL M KL M

KLMN

C C

R C C R

E R R E

N N

V N N

U V



  

  



 

 

 

 

 

   

  

 

  

 3 1 23 2

(3) (0)

22

,

.

} { }

{ }
KLM N KLM N

KL KL

V

W C

 

 

 





  

  (25) 

Для тензоров третьего приближения, входящих в формулы (19), 

имеют место выражения (110) из [36], для цилиндрических оболочек 

эти формулы принимают вид 

 

(3) (2)

33 22

(3) (2) (2) (2)

33 13 1 23 2 22

(3) (2) (2)

33 13 1 23 2 22

(3)

33 22

(3)

33 13 1 23 2

(3)

33 1

,

0,

,

,

0,

{ }

{ } { } { }

{ } { } { }

{ }

{ } { }

{

KL KL

KLJ KL J KL J KLJ

KLJM KLJ M KLJ M KLJM

KL KL

KLM KL M KL M

KLMN

C C

R C C R

E R R E

N N

V N N

U V



  

  



 

 

 

 

 

   

  

 

  

 3 1 23 2

(3) (0)

22

,

.

} { }

{ }
KLM N KLM N

KL KL

V

W C

 

 

 





  

  (26) 
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Для кривизн второго приближения (2)

IJ , участвующих в выраже-

нии (16) имеют место формулы (100) из [36], для цилиндрических 

оболочек эти формулы принимают вид  

 (2) (2) (0) (0) (2) (0) (0)

11 22 3,22 2,2 12 3,12 2,1

1
0, , ( ).

2
u u u u           (27) 

Итоговые выражения для компонент тензора напряжений в 

цилиндрической оболочке. С учетом этих выражений (12), (17)–(26) 

компоненты тензора напряжений 3 33, ,IJ     (14)–(16) в цилиндри-

ческой оболочке могут быть представлены в следующей итоговой 

форме   

 

 

(0) (0) (0) (0) (0)

(1) (0) (0) (0) (0) (0)

3 , , ,

2

3 ,

(0) (0) (0) (0)

33 22 22

2 (2) (0)

33 , 22

,

,

{ } { }

{ } { }

{

T

IJ IJKL KL IJkl kl IJKL KL

T T

KLJ KL J kl kl kl kl

KLJ KL J

T

KL KL kl kl

KLJM KL JM KL

C C C

R C C

V

C C

E C

       



 

   

   



  



  

    



  

 

æ

æ

æ

æ

æ  
  

(0)

3 (3) (0) (2)

33 , 220,5 .

}

{ }

KL

KLMN KL MN KL KLp p U C



 

 

   



       æ

  (28) 

Постановка задачи об осесимметричном изгибе цилиндриче-

ской композитной оболочки при воздействии неравномерного 

нагрева и давления.  Рассмотрим цилиндрическую оболочку, 

нагруженную равномерным давлением constp  , массовые силы 

моменты будем полагать отсутствующими 0iF  , 0Im  . На внеш-

ней поверхности оболочки действует внешний источник тепла,                

не зависящий от окружной координаты 2X . Оба торца оболочки             

полагаются теплоизолированными и жестко закрепленными 

 
1 1 (0) (0) (0) (0)

1 2 3 3,10, : 0, 0.X X L u u u u        (29) 

Композиционный материал, из которого изготовлена оболочка, 

рассматриваемый как среда с эффективными свойствами, будем                 

полагать ортотропным [42]. 

При таких граничных условиях в оболочке имеет место состоя-

ние осесимметричного изгиба, при котором отличны от нуля прогиб 
(0)

3u  и продольное перемещение (0)

1u , а также изгибающий момент 

11M , окружной момент 
22M , перерезывающая сила 1Q  и 11 22,T T  — 

продольное и окружное усилия, которые зависят только от осевой 

координаты 1X   
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(0) (0) 1

1 3 11 22 1 11 22

(0)

2 12 12 2

, , , , , , / / ,

0, 0, 0, 0.

u u M M Q T T X

u M T Q   
  (30) 

Тогда система уравнений равновесия (6) принимает вид  

 

11,1

11,1 1

1 ,1 22

0,

0,

0.

T

M Q

Q T p

 


 


  

  (31) 

Подставляя (30) в (4), (5) и (27), получаем следующие выражения 

для деформаций и кривизн срединной поверхности  

 
(0) (0) (0) (0) (0)

11 1,1 22 3 12, , 0,u u       (32) 

 (0)

11 3,11 22 12, 0, 0,u        (33) 

 (2) (2) (2)

11 22 120, 0, 0.       (34) 

Тождественно ненулевые определяющие соотношения (7) (8) с 

учетом (30) записываются следующим образом  

 

(0) (0)

11 1111 11 1122 22 1111 11 11

(0) (0)

22 1122 11 2222 22 2211 11 22

(0) (0)

11 1111 11 1122 22 1111 11 11

,

,

.

T

T

T

T C C B T

T C C B T

M B B D M

  

  

  

   

   

   

  (35) 

Тепловые напряжения 11 22,T TT T  и тепловые моменты 11

TM  зависят 

от температуры (0)  согласно формулам (9) и  (12) 

 (0) (0) (0) (0), .T T T T

IJ IJkl kl IJ IJkl klT C M C      æ   (36) 

Алгоритм решения задачи. Подставляя кинематические                   

соотношения (32), (33) в уравнения равновесия (31), и исключая               

неизвестную функцию (0)

1u , получаем относительно перемещения 

(0)

3u  следующее уравнение 

 
(0) 2 (0) 2 (0)

3 1 3 2 32 ,IV II

pu k u k u k     (37) 

где обозначены 

 

2 21122 2222
1 2

1111 1111

0

2 1

1111

22 11,11

, ,

,

,

p

T T

B C
k k

D D

f T
k

D

f p T M



 




   

  (38) 
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здесь 

 

2

1122
2222 2222 1122 1122 2 1111

1111
2

1111 1122
1111 1111 2

1111 1111

1111
22 22 2 11 11 11 1 11 1

1111

( )
, ,

( )
, ,

, , ,T T T T T T

C
C C B B B

C

B C
D D

C C

B
T T T M M T

C





  

   

  

    

  (39) 

а 0

1 11constT T   — постоянное значение продольного усилия.     

Если constf  , то общее решение уравнения (37) имеет вид  

 
4

(0) 0 1

3 0 3 1

1

( ),m m

m

u w T C Ф X


     (40) 

где 0 2222 3 2 2222/ , / ,w f C C    а mC  — произвольные константы.  

Если 2 2

1 2k k  (т.к. 
1122 2222B C , то это условие выполняется для реаль-

ных материалов), тогда функции 1( )mФ X  имеют вид 

 

1 1

1 1

1 1

1 2

1 1

3 4

cos , sin ,

cos , sin ,

rX rX

rX rX

Ф e X Ф e X

Ф e X Ф e X

 

 

  

 
  (41) 

где 

 

2 2 2 2

1 2 2 1

2

2
1 2 2

, ,
2 2

1
.

2

k k k k
r

k

r






 
 

 


  (42) 

Из (32) и (35) имеем следующее уравнение 

 
(0) (0) 0 (0) (0)

11 1,1 1 11 1122 3 1111 3,11

1111

1
( ).Tu T T C u B u

C
        (43) 

Интегрируя уравнение (43) с учетом (40), находим продольное 

перемещение (0)

1u  с точностью до шести неопределенных констант 

0 1 4, ,...,C C C  и 0

1T   

 

14
(0) 0

1 0 1 ,1 1 11

1 1111

0 1

2 0 3 1 2 1 1 1 2

2 2 33 3 4 41 4

( )

( ) ( ( )

( ) ( ) ( )).

T

m m

m

X
u C C Ф T T

C

w T X C rФ Ф

C rФ Ф C rФ Ф C rФ Ф



    

  



    

     

    



  (44) 
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Подставим полученные выражения (40) и (44) в уравнения для 

деформаций срединной поверхности и искривлений цилиндрической 

оболочки (32), (33) 

 

4
(0) 011
11 2 0 2 3 1 2 1 ,11

11111 1111

4 4
(0) 0

22 0 3 1 11 ,11

1 1

1
( ) ( ),

, .

T

m m m

m

m m m m

m m

T
w T C Ф Ф

C C

w T C Ф C Ф

     

  



 

     

    



 

  (45) 

Подставляя формулы (45) в соотношения (35) и (3.26), получаем 

выражения для усилий и  моментов через функции 1( )mФ X  и их про-

изводные 

4

22 0 2222 2222 1122 ,11 22

1

4

11 0 1

0

122 1122 1111 ,11 1 1 1 11221

1

3( ).

( ) ,

( )

T

m m m

m

T

m m m

m

T w C C C Ф B Ф T

M w B C B Ф D Ф BM T  







   

    




 (46) 

Подставляя выражения (40), (44) для перемещений (0)

1u  и (0)

3u  в 

граничные условия (29), получаем систему шести линейных алгебра-

ических уравнений 

 
5

0

, 0,...,5,sm m s

m

Ф C U s


    (47) 

для нахождения шести констант mC , 0,1,...,5m  , где обозначены 

 

1 2

3 ,1 4 ,1

01 1 31 2 1 11 12

02 1 32 2 1

2 1 13 14

04 1

12 11

03 1 33

51 1 41 2 1 21 22

52 1 42 2 1

34 2 1 14 13

(0), ( ),

(0), ( ), 1,..., 4,

( ),

( ),

( ),

( ),

( ),

(

m m m m

m m m m

Ф Ф Ф Ф L

Ф Ф Ф Ф L m

Ф Ф rФ Ф

Ф Ф rФ Ф

Ф Ф

Ф Ф rФ Ф

rФ Ф

Ф Ф

Ф

rФ

Ф

Ф

r

   

   



  

  

   



  



 

  

  

  



  

 



  

22 21

53 1 43 2 1 23 24

54 1 44 2 1 24 23

( ),

( )

),

,

rФ Ф

Ф Ф

Ф Ф rФ

Ф

Ф

Ф   

   



 



 

 



  

 55 2 3 00

1111

50 05 0

, 1,

1, 0, 0, 1,..., 4,m

L
Ф L Ф

C

Ф Ф Ф m

   

   
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1 2 0 0 3 4, 0,UU U w U U       

 
2 0 11

1111

5 .TL
U w L T

C
    

Решая систему (47), находим все константы mC   

 
5

1

0

, 0,...,5,m ms s

m

C Ф U m



    (48) 

где 1

msФ  — матрица, обратная к smФ . 

Напряжения в цилиндрической оболочке при осесимметрич-

ном изгибе и неравномерном нагреве. Получим явные выражения 

для тенгенциальных IJ , касательных 3I  и поперечных 33  компо-

нент  тензора напряжений, используя формулы (28) и (32)–(34) для 

задачи об осесимметричном изгибе оболочки 

 

 

(0) (0) (0) (0) (0) (0) (0)

11 11 22 22 11 11

(0) (0) (0) (0) (0) (0)

13 1111 11,1 1122 22,1 11 ,1

2 (0)

1111 11,1

(0) (0) (0) (0)

23 1211 11,1 1222 22,1

,

,

{ } { } { }

{ }

{ } { } {

T

IJ IJ IJ IJkl kl IJ

T

kl kl

С С C C

C C C

C

C C C

  



 

    

   

 

  

   

    



   

æ

æ

æ

æ  

 
 

 

(0) (0)

12 ,1

2 (0)

1211 11,1

(0) (0) (0) (0) (0) (0)

33 2211 11 2222 22 22

2 (0) (0) (0) (0) (0)

1111 11,11 1122 22,11 2211 11

3 (0)

1111 11,

,

0,5

}

{ }

{ } { } { }

{{ } } {{ } } { }

{{ } }

T

kl kl

T

kl kl

C

C C C

C C C

p p C





  

    

 



 

   

   

  





   

   

    

æ

æ

æ

æ  11 .

  (49) 

Здесь учтено, что (1) (2)

3 33, ,KLJ KLJ KLJMR V E   согласно формулам (22) 

имеют следующий явный вид  

 

(1) (0) (1) (0) (1) (0)

1111 1111 1221 1122 2111 1211

(1) (0) (0) (0)

2221 1222 13111 1111 23111 1211

(2) (0)

331111 1111

(2) (0)

332211 1122

(3) (0)

331111 1111

, , ,

, , ,

,

,

{ } { } { }

{ } { } { }

{{ } }

{{ } }

{{ }

R C R C R C

R C V C V C

E C

E C

U C

  

  

 

 



 



  

  





 .}

  (50) 

Таким образом, получены явные выражения тангенциальных IJ , 

касательных 3I  и поперечных 33  компонент  тензора напряжений. 
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Выражения для тепловых напряжений T

ij  согласно формулам 

(12), (17) и (21) имеют вид 

 

(0) (0)

(0) (0) (0) (0)

3 1 ,1 33 22

,

0, .{ } { }

T T

IJ IJkl kl

T T T T

kl kl kl kl

C

C C   

 

   



  æ æ
  (51) 

В силу того, что в данной задаче температурное поле не зависит 

от координаты 1X , касательные тепловые напряжения 
3

T

  в слоях 

цилиндрической оболочки отсутствуют. Однако из-за того, что      

перемещения (0)

3u  и (0)

1u  зависят от всех тепловых напряжений в               

совокупности, касательные напряжения 3I  в слоях оболочки все 

равно зависят от температуры. 

Расчет характеристик композиционного материала цилин-

дрической оболочки. При проведении расчетов цилиндрической 

композитной оболочки была рассмотрена многослойная слоисто-

волокнистая структура (пакет слоев), каждый слой которой представ-

лял однонаправленно-армированный системой нитей материал (1D 

материал), ориентированный под некоторым углом ( )s  к направле-

нию 1X  в касательной плоскости, ортогональной к оси 3OX , совпа-

дающей с направлением  . Введем собственную систему координат 

( )

i

sX  в каждом s  м слое, повернутую на угол ( )s  к системе коорди-

нат iX  в каждой точке оболочки. Обозначим компоненты тензоров 

модулей упругости, теплопроводности и теплового расширения 1D 

материала в собственной системе координат ( )

i

sX  как 
( ) ( ) ( )ˆ ˆ ˆ, ,s s s

ijkl ij ijC   . 

Однонаправленные слои полагаем трансверсально-изотропными [42]. 

Для расчета компонент тензоров 
( )ˆ s

ijklC  в собственной системе коорди-

нат используем формулу [14]: 
( ) ( ) 1ˆ ˆs s

ijkl ijklC П  , где 
( )ˆ s

ijklП  — тензор упру-

гих податливостей , являющийся обратным к 
( )ˆ s

ijklC , и выражающийся 

через технические упругие константы LE  — продольный модуль 

упругости, TE  — поперечный модуль упругости, Lv  — продольный 

коэффициент Пуассона, Tv  — поперечный коэффициент Пуассона, 

TG  — поперечный модуль сдвига, LG  — продольный модуль сдвига 

1D материала [15]. Также в собственной системе координат ( )

i

sX  

компоненты тензоров 
( ) ( )ˆ ˆ,s s

ij ij   1D материала выражаются через           

L  — продольный коэффициент теплового расширения (к.т.р.),         
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T  — поперечный к.т.р., L  — продольный коэффициент теплопро-

водности и 
T  — поперечный коэффициент теплопроводности 1D 

материала.  1D материал в каждом слое полагается состоящим из 

матрицы и волокон одного и того же типа, с одним и тем же коэффи-

циентом армирования. 

Значения компонент тензоров в единой для всех слоев системе 

координат iX  вычисляются с помощью тензорных формул преобра-

зования компонент при повороте системы координат на угол ( )s  [42] 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

ˆ( ) , ,

ˆˆ( ) , ( ) , ,

s s s s s

ijkl mnpq im jn kp q s

s s s s s s

ij mn im jn ij mn im jn s

C C Q Q Q Q V

Q Q Q Q V





 

      

 

  
  

а sV  — s  ый слой оболочки, а ( )s

imQ  — элементы матрицы поворо-

та слоя с номером s  на угол ( )s , 1,...,s S . 

При расчетах были приняты следующие значения констант 1D 

материала:  

 
6 1 6 1

100 ГПа; 6 ГПа; 0,1; 0,15; 4 ГПа;

4 10 K ; 50 10 K ; 1,5 Вт/(м К);

0,3 Вт/(м К).

L T L T L

L T L

T

E E G 

  



   

    

     

 

  

Углы ориентации волокон в слоях ( )s  (пакет слоев) был выбран        

пакет из четырех слоев с системой углов (1) (2) (3) (4)[ / / / ]    

0 0 0 0[ 45 / 30 / 30 / 45 ]    . Толщины всех слоев были выбраны одина-

ковыми, что обеспечивало ортотропность всего композиционного 

материала оболочки, как эффективной среды. 

Толщина оболочки была постоянной и равной 22 10  мh   ,                

радиус срединной поверхности оболочки 0,2 мR  , безразмерная 

длина оболочки 0,5L  . Давление на внешней стороне оболочки: 
410  ГПаp 

  , давление на внутренней стороне оболочки: 

0 ГПаp  . На внешней оболочке был задан конвективный теплооб-

мен с внешней средой, а внутренняя поверхность оболочки была  

теплоизолирована: 

 210 Вт/(м К), 573 К, 0.T

e eq         

Результаты численного моделирования. В данном разделе 

представлены результаты расчетов напряженно-деформированного 

состояния цилиндрической оболочки при совместном воздействии 

внешнего давления и нестационарного одностороннего нагрева с 
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внешней стороны оболочки. Расчеты проведены для относительно 

короткой оболочки 0,5L  . 

На рис. 2 показаны распределения температуры по толщине        

оболочке в различные моменты времени: от 1 до 40 с. В силу условий 

теплоизоляции на внутренней поверхности оболочки в течение            

указанного промежутка времени температурное поле в оболочке вы-

ходит на равномерное по всей толщине.  

Наиболее существенный вклад в НДС температурное поле          

вносит на начальных моментах времени, когда градиент температуры 

по толщине имеет максимальные значения. 
 

 
  

Рис. 2. Распределение температуры , K  по толщине оболочки  

для различных моментов времени t  
 

На рис. 3 приведены распределения тепловых деформаций 
T

ij  в 

слоях оболочки для различных моментов времени. Графики попереч-

ной тепловой деформации 33

T  подобны распределениям температу-

ры, поскольку коэффициенты теплового расширения 
33  всех слоев в 

поперечном направлении практически совпадают и близки к к.т.р. 

матрицы. Вследствие этого функции 33( )T   для всех моментов              

времени являются гладкими. 

В тоже время к.т.р. слоев 
IJ  в тангенциальной плоскости суще-

ственно различаются, т.к. они существенным образом зависят от угла 

армирования слоя. Для слоев 1 и 4 угол армирования равен  ο45 , а 

для слоев 3 и 4 угол армирования равен ο30 . Вследствие этого         

различия к.т.р. в слоях графики функций ( )T

IJ   являются кусочно-

550

500

450

400

350

0,4 0,2 0,0 0,2 0,4  

, K

40 20

10

7

5

3

1
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гладкими (рис. 3б, 3в и 3г), причем в слоях 1 и 4 тепловые деформа-
ции почти на порядок меньше тепловых деформаций в слоях 2 и 3 во 
все рассматриваемые моменты времени. 

При увеличении времени нагрева происходит постепенное        
возрастание значений компонент тензора тепловой деформаций 

( )T

IJ  , при этом при увеличении времени графики этих функций 

остаются кусочно-постоянными. 

 
 

 
 

 

 

а б 

 

 
 

 

 

в г 

Рис. 3. Распределение тепловых деформаций по толщине оболочки                             

для различных моментов времени t  (цифры у кривых — время, с): 

а — 
33

T ; б — 
11

T ; в — 22

T ; г — 
12

T  

 

Графики функций тепловых напряжений ( )T

IJ   (рис. 4) также    

являются кусочно-гладкими, поскольку эти напряжений полностью 

определяются тепловыми деформациями ( )T

ij  , ( )T

ij  , но поскольку 

в эти деформации вносит вклад также и поперечная компонента         

тепловой деформации 33( )T  , то в слоях 1 и 4 тепловые напряжения 

оказываются сопоставимы с тепловыми напряжениями в слоях 2 и 3. 
Как видно из графиков, при увеличении времени нагрева происходит 

постепенное возрастание абсолютных значений напряжений ( )T

IJ  . 
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а 

 

 
 

 

 

б в 

Рис. 4. Распределение тепловых напряжений 
22 , ГПаT  по толщине оболочки 

для различных моментов времени t (цифры у кривых — время, с): 

а —  11

T  ; б —  22

T   ; в —  12

T   

 

На рис. 5…7 представлены результаты расчета осредненных па-
раметров оболочки, также для различных моментов времени нагрева.  

Графики изгибающего момента 11M  при наличии нагрева            

существенным образом отличаются случая отсутствия нагрева.              

Локальные максимумы на торцах оболочки момент 11M  имеют              

отрицательные значения, а в центре оболочки — положительное           
значение. По мере увеличения общего прогрева оболочки экстре-

мальные значения функции 1

11( )M X  возрастают.  

Подобным же образом наличие нагрева изменяет распределение 

перерезывающей силы 1Q  по длине оболочки: максимальные значе-

ния функции 1

1( )Q X  на торцах оболочки меняют знаки, а абсолют-

ные значения этих максимумов функции 1

1( )Q X  возрастают пример-

но на порядок по сравнению со случаем нагружения без нагрева. С 
увеличением времени нагрева экстремальные значения функции 

1

1( )Q X  возрастают (рис. 5б). 
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Рис. 6. Распределение окружного усилия 
22T  по длине оболочки                                     

для различных моментов времени t  (цифры у кривых — время, с) 

 
 

 
 
 

 

 

а б 

Рис. 7. Распределение перемещений по длине оболочки для различных              

моментов времени t (цифры у кривых — время, с) нагрева: 

а — 
 0

1u ; б — 
 0

3u  

 

Аналогичные результаты имеют место и для окружного усилия 

22T (рис. 6), для прогиба (0)

3u  (рис. 7б), для продольного перемещения 
(0)

1u  (рис. 7а), для  продольной деформации (0)

11  (рис. 8а) и  окружной 

деформации (0)

22  (рис. 8б) при воздействии одностороннего нагрева 

на оболочку дополнительно к внешнему давлению. При наложении 

нагрева с внешней стороны оболочки прогиб (0)

3u  меняет знак:           

происходит осесимметричное выпучивание оболочки в сторону          
действующего источника нагрева. 
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Рис. 8. Распределение тангенциальных деформаций срединной поверхности 

по длине оболочки для различных моментов времени t  

(цифры у кривых — время, с) нагрева: 

а — 
 0

11 ; б — 
 0

22  

 

Напряжения в оболочке при наличии одностороннего нагрева 

показаны на рис. 9…13. Влияние нагрева приводит к существенному 

возрастанию общего уровня всех напряжений, прежде всего изгиб-

ных 11  (рис. 9), окружных 
22  (рис. 10) и касательных 

12  (рис. 11), 

возрастание экстремальных значений напряжений происходит более, 

чем на порядок. По мере прогрева оболочки по толщине с увеличени-

ем времени t  общий уровень этих напряжений возрастает. 

Качественно распределение всех тангенциальных напряжений 

IJ  в слоях при наличии нагрева также меняется. 

 
 

 
 
 

 

 

а б 

Рис. 9. Распределение изгибных напряжений 
11   по толщине оболочки 

для различных моментов времени t  (цифры у кривых — время, с): 

а — без нагрева;  

б — с добавлением нагрева 

1

0,0 0,1 0,2 0,3 0,4 0,5

X

0, 2

0,1

0,0

0,1

0, 2



 30
10

53

30

10

5

3

1,0

0,8

0,6

0, 4

0, 2

0,0

1

0,0 0,1 0,2 0,3 0,4 0,5

X

 0 3

11 10 
 0 3

22 10 

4

2

0

2

4





30

10

5 3

100

50

0

50

100

150

200









11, МПа 11, МПа

0,4 0,2 0,0 0,2 0,4  
0,4 0,2 0,0 0,2 0,4  



Ю.И. Димитриенко, Е.А. Губарева, А.Е. Пичугина, К.В. Белькова, Д.М. Борин 

22 

 

 
 
 

 

 

а б 

Рис. 10. Распределение окружных напряжений 
22   по толщине оболочки 

для различных моментов времени t  (цифры у кривых — время, с): 

а — без нагрева; б — с добавлением нагрева 
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Рис. 11. Распределение касательных напряжений 
12  по толщине оболочки   

для различных моментов времени t  (цифры у кривых — время, с): 

а — без нагрева; б — с добавлением нагрева 
 

При отсутствии нагрева и действии только внешнего давления 

изгибные напряжения 11  во внешних слоях 3 и 4 — отрицательные 

(рис. 9а), а во внутренних слоях 1 и 2 — положительные. Добавление 

одностороннего внешнего нагрева приводит к тому, что знак напря-

жений 11  меняется: во внешнем, наиболее нагретом  слое 4  оно    

становится положительным, а в остальных слоях 1,2 и 3 — отрица-

тельным. С увеличением времени нагрева происходит постепенное 

возрастание значений напряжений 11  по абсолютной величине. 

Аналогичный эффект изменения знака напряжений при действии 

нагрева возникает и для окружных напряжений 
22  (рис. 10), а также 

для касательных напряжений 
12  (рис. 11).         
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Рис. 12. Распределение напряжений межслойного сдвига по толщине                     

оболочки для различных моментов времени t  (цифры у кривых — время, с): 

а — 
13  ; б — 

23   
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Рис. 13.  Распределение поперечных напряжений 
33  по толщине оболочки 

для различных моментов времени t  (цифры у кривых — время, с): 

а — без нагрева; б — с добавлением нагрева 
 

Напряжения межслойного сдвига 
13  и 

23  (рис. 12)  при           

наложении одностороннего нагрева увеличивают значения, однако не 

на порядок, как тангенциальные напряжений, а примерно в 2 раза. 

Распределение напряжений межслойного сдвига по толщине сохра-

няет вид, подобный параболическому, с увеличением времени нагре-

ва максимум этих напряжений возрастает.  

Поперечные напряжения 
33  при наложении одностороннего 

нагрева возрастают, так же как и тангенциальные напряжения,                

примерно на порядок (рис. 13а и 13б). Максимумы этих напряжений 

по абсолютной величине существенно превосходят значение напря-

жений, обусловленных только давлением сжатия 0,1 МПаp  .    

Расчет этих напряжений грает важную роль для оценки возможных 

расслоений композитных конструкций, так как при нагреве эти 
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напряжения 33 , больше по абсолютной величине напряжений   

межслойного сдвига 3 , которые обычно считаются наиболее 

«опасными» для слоистых композитов при воздействии только                   

механических нагрузок. 

При увеличении времени нагрева происходит постепенное                

возрастание  абсолютных значений поперечных напряжений 33 . 

Выводы. С использованием разработанной в части 1 статьи 

асимптотической общей теории тонких многослойных оболочек 

сформулированы осредненные двумерные уравнения термоупругости 

теории многослойных анизотропных цилиндрических оболочек, а 

также получены явные аналитические выражения для вычисления 

всех шести компонент напряжений, как функций от поперечной и 

продольных координат. При выводе этих выражений не использова-

ны каких-либо дополнительные гипотезы о характере напряжений 

или перемещений по толщине.  

Разработанная теория тонких цилиндрических оболочек является 

логически непротиворечивой: геометрические допущения, использу-

емые при построении этой теории, не противоречат полученным             

результатам о характере распределения неизвестных функций и о              

порядке их малости.  

Приведен пример расчета термонапряжений в цилиндрической 

композитной оболочке при совместном воздействии внешнего рав-

номерного давления (задача об осесимметричном изгибе) и односто-

роннего нестационарного нагрева. Показано, что разработанная тео-

рия позволяет получать детальную картину о распределении всех 

напряжений по толщине оболочки, в частности показано, что при од-

ностороннем нагреве поперечные термонапряжения являются более 

«опасными», чем традиционно считающиеся таковыми напряжения 

межслойного сдвига для слоистых композитов. Для решения этого 

класса задач разработанная асимптотическая теория представляет, 

по-видимому, наибольший практический интерес. 
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Modeling of thermal stresses in composite shells 

based on asymptotic theory. 

Part 2. Calculation of cylindrical shells 

© Yu.I. Dimitrienko, E.A. Gubareva, A.E. Pichugina,                                          
K.V. Bel’kova, D.M. Borin 

Bauman Moscow State Technical University, Moscow, 105005, Russia                       
 
 
 
 

The general asymptotic theory of thin multilayer shells developed by the authors earlier 
in Part 1 of this study is applied to cylindrical anisotropic thermoelastic shells. It is 
shown that for cylindrical shells the general theory is substantially simplified: general 
two-dimensional averaged thermoelasticity equations for multilayer shells are obtained. 
These equations are similar to the classical equations of cylindrical shells in the                    
Kirchhoff-Love theory, but they are obtained in a completely different way: on the basis 
of only an asymptotic analysis of the general three-dimensional equations of the theory of              
thermoelasticity. No hypotheses regarding the distribution of displacements or stresses 
over the thickness are used in this theory, which makes it logically consistent. In addition, 
the developed theory makes it possible to obtain explicit analytical expressions for all 6 
components of the stress tensor in cylindrical anisotropic shells. Explicit expressions               
are obtained for all tensor constants included in these stress formulas. An example of 
calculating thermal stresses in a cylindrical composite shell with axisymmetric bending 
due to the combined action of external pressure and one-sided non-stationary heating is 
given. An example of a layered-fiber 4-layer shell with different angles of helical winding 
of reinforcing fibers is considered. It is shown that the developed one allows one to study 
in detail such complex effects as the formation of significant transverse thermal stresses 
during heating, which significantly exceed the level of interlayer shear stresses, which 
are traditionally considered the most dangerous for layered composites. 
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