532.51 Mathematical simulation of non-isothermal steady flow of non-Newtonian fluid by finite element method

Dimitrienko Y. I. (Bauman Moscow State Technical University), Li S. -. (Bauman Moscow State Technical University)

FINITE ELEMENT METHOD; NON-NEWTONIAN FLUID; NON-ISOTHERMAL FLOW; ITERATIVE ALGORITHM; COMPLEX GEOMETRIC SHAPES, CONVECTION


doi: 10.18698/2309-3684-2018-2-7095


The finite element method is used to simulate the nonisothermal flow of non-Newtonian viscous fluids in complex geometries. The Carreau-Yasuda model of a non-Newtonian fluid is considered, in which the dependence of the viscosity coefficient on the second invariant of the strain rate tensor has a power form. A variational formulation of the problem of the motion of a non-Newtonian fluid for a plane case is obtained. The iteration algorithm of Newton-Raphson is used to solve the Navier-Stokes equations system, and the Picard iteration algorithm is used to solve the energy equation. The problem of the movement of a polymer mass in a mold of complex variable cross section in the presence of an uneven temperature field is considered. With the help of finite element modeling, a numerical analysis of the effect of various parameters on the movement of a liquid and the heat transfer of a polymer material at different values of external pressure was carried out. It is shown that the nature of the motion of a non-Newtonian fluid essentially depends on the rheological properties of the fluid and the characteristics of the geometric shape, which must be taken into account in technological processes of plastics processing.


[1] Bird R.B, Armstrong R.C., Hassager O., Dynamics of polymeric liquids. Vol. 1: Fluid mechanics. John Wiley & Sons, 1987, 649p.
[2] Chhabra R.P., Richardson J.F., Non-Newtonian Flow: Fundamentals and Engineering Applications. Elsevier, 1999, 436p.
[3] Larson R.G., The structure and rheology of complex fluids (topics in chemical engineering). Oxford University Press, 1999, 663p.
[4] Dimitrienko Yu.I., Zakharova Yu.V., Bogdanov I.O. Mathematical and numerical simulation of the binder filtration process in the fabric composite under the RTM manufacturing method Humanities and Science University Journal, 2016. no. 19. PP. 33–43.
[5] Dimitrienko Yu.I., Shpakova Yu.V., Bogdanov I.O., Sborshchikov S.V. Inzhenernyj zhurnal: Nauka i innovacii – Engineering Journal: Science and Innovation, 2015, no. 12(48), 7 p.
[6] Dimitrienko, I.O. Bogdanov Multiscale modeling of filtration liquid binding processes in composite designs at RTM production method. Mathematical Modeling and Computational Methods, 2017. no. 2. pp. 3–27.
[7] Dimitrienko Yu.I., Ivanov M.Yu. Modeling of Nonlinear Dynamical Processes of Transfer in Porous Media. Vestnik MGTU im N.E.Baumana. Ser. Estestvennye nauki – Herald of the Bauman Moscow State Technical University. Natural Sciences,, 2008. no. 1. PP.39-56.
[8] Dimitrienko Yu.I., Dimitrienko I.D. Simulation of local transfer in periodic po-rous media European Journal of Mechanics/B-Fluids, 2013. № 1. P.174-179.
[9] Dimitrienko Yu.I., Levina A.I., Bozhenik P. Vestnik MGTU im N.E.Baumana. Ser. Estestvennye nauki – Herald of the Bauman Moscow State Technical University. Natural Sciences, 2008. no. 3. PP.90-104
[10] Dimitrienko Yu. I., Bogdanov I.O. Inzhenernyy zhurnal: nauka i innovatsii – Engineering Journal: Science and Innovation, 2018, no. 3(75).
[11] Zienkiewicz O.C., Taylor R.L., Zhu J.Z., The Finite Element Method: Its Basis and Fundamentals: Its Basis and Fundamentals. Elsevier, 2005, 733p.
[12] Zienkiewicz O.C., Cheung Y.K., Finite elements in the solution of field problems. The Engineer, 1965, vol. 220, iss. 5722, pp. 507-510.
[13] Zienkiewicz O.C., Taylor R.L., Nithiarasu P., The finite elements methods for fluid Dynamics. Elsevier, 2005, 435p.
[14] Oden J.T., The finite element method in fluid mechanics. Finite element methods in continuum mechanics, 1973, pp. 151-186.
[15] Lewis R.W., Nithiarasu P,. Seetharamu K.N., Fundamentals of the finite element method for heat and fluid flow. John Wiley & Sons, 2004, 341p.
[16] Nassehi V., Practical aspects of finite element modelling of polymer processing. John Wiley & Sons, 2002, 273p.
[17] Han X.H., Li X.K., An iterative stabilized CNBS-CG scheme for incompressible non-isothermal non-Newtonian fluid flow. International journal of heat and mass transfer, 2007, vol. 50, iss. 5-6, pp. 847-856.
[18] Mu Y., Zhao G.Q., Wu X.H., Zhai J.Q., Modeling and simulation of three-dimensional planar contraction flow of viscoelastic fluids with PTT, Giesekus and FENE-P constitutive models. Applied Mathematics and Computation, 2012, vol. 218, iss. 17, pp. 8429-8443.
[19] Reddy J.N., Gartling D.K., The finite element method in heat transfer and fluid dynamics. CRC press, 2010, 489p.
[20] Dimitrienko Yu.I. Thermomechanics of composites under high temperatures. Springer, 2015, 434p.
[21] Dimitrienko Yu.I. Mekhanika sploshnoy sredy. Tom 2. Universalnye zakony mekhaniki i elektrodinamiki sploshnoy sredy [Continuum Mechanics. Vol. 2. Universal laws of mechanics and electrodynamics of continuous media]. Moscow, BMSTU Publ., 2011, 560 p.
[22] Dimitrienko Yu.I. Nelineinaya mekhanika sploshnoi sredy [Nonlinear Continuum Mechanics]. Moscow, Fizmatlit Publ., 2009, 624 p.
[23] Dimitrienko Yu.I. Mekhanika sploshnoy sredy. T.1. Tenzornoe ischislenie. [Continuum Mechanics. Vol. 1. Calculus of Tensors.]. Moscow, BMSTU Publ., 2011, 463 p.
[24] Dimitrienko Yu.I. Tensor analysis and nonlinear tensor functions. Springer, 2002, 662p.
[25] Han C.D., Rheology and processing of polymeric materials: Volume 1: Polymer Rheology. Oxford University Press on Demand, 2007, 707p.
[26] Peters G.W.M., Baaijens F.P.T., Modelling of non-isothermal viscoelastic flows, J. Non-Newton. Fluid Mech. 1997, vol. 68, pp. 205-224.
[27] Toth G., Bata A., Belina K. Determination of polymer melts flow-activation energy a function of wide range shear rate. IOP Conf. Series: Journal of Phys-ics: Conf. Series 1045 (2018) 012040


Димитриенко Ю.И., Шугуан Ли Конечно-элементное моделирование неизотермического стационарного течения неньютоновской жидкости в сложных областях. Математическое моделирование и численные методы, 2018, № 2, с. 70–95.



Download article

Количество скачиваний: 777