539.3 Asymptotic theory of thin multilayer micropolar elastic plates

Dimitrienko Y. I. (Bauman Moscow State Technical University), Boyko S. V. (Bauman Moscow State Technical University)

ASYMPTOTIC THEORY, SMALL PARAMETER, MULTILAYER THIN PLATES, MICROPOLAR THEORY, BENDING, STRESS TENSOR


doi: 10.18698/2309-3684-2023-2-3366


The problem of development of a theory for calculating the stress-strain state of thin multilayer elastic plates in the moment (micropolar) theory, is considered. The solution of this problem is built using an asymptotic analysis of the general equations for a 3-dimensional quasi-static problem of the moment theory of elasticity. The asymptotic analysis is carried out with respect to a small parameter representing the ratio of the plate thickness to its characteristic length. Recurrent formulations of local problems of the moment theory of elasticity are obtained. Explicit analytical solutions are obtained for these problems. The derivation of the averaged system of equations for multilayer plates is presented. It is shown that the asymptotic theory makes it possible to obtain an explicit analytical expression for all 9 components of the stress tensor and the moment stress tensor (in general) in the plate. As a special case, the problem of calculating the stress-strain state of a centrally symmetrical hingedly fixed plate when bending under the action of a uniformly distributed pressure. A complete analytical solution of this problem for all non-zero components of the stress tensor and the moment stress tensor is obtained. A numerical analysis of the solution of the problem for a single layer plate for the stress tensor is carried out, basing on the obtained expressions. A comparative analysis of the obtained results with similar calculations for the classical theory of elasticity is carried out, with revealing of similarities and differences for all components of the stress tensor.


Lyav A. Matematicheskaya teoriya uprugosti [Mathematical theory of elasticity]. Moscow, ONTI Publ., 1935, 674 p.
Novatsky V. Teoriya uprugosti [Theory of elasticity]. Moscow, Mir Publ., 1975, 872 p.
Lurie A.I. Teoriya uprugosti [Theory of elasticity]. Moscow, Nauka Publ., 1970, 940 p.
Timoshenko S. P., Goodyear J. Teoriya uprugosti [Theory of elasticity]. Moscow, Nauka Publ., 1979, 560 p.
Pobedrya B.E. CHislennye metody v teorii uprugosti i plastichnosti [Numerical methods in the theory of elasticity and plasticity]. Moscow, Lomonosov Moscow State University Publ., 1995, 366 p.
Gorshkov A.G., Starovoitov E.I., Tarlakovsky D.V. Teoriya uprugosti i plastichnosti [Theory of elasticity and plasticity]. Moscow, Fizmatlit Publ., 2002, 416 p.
Dimitrienko Yu.I. Mekhanika sploshnoy sredy. Tom 4. Osnovy mekhaniki tverdogo tela [Continuum Mechanics. Vol. 4. Fundamentals of solid mechanics]. Moscow, BMSTU Publ., 2013, 624 p.
Cosserat Е., Cosserat F. Th´eorie des corps d´eformables. Herman et Fils, Paris, 1909, 226 p.
Truesdell C.A., Toupin R.A. The Classical Field Theories. Encyclopedia of Physics, vol. 3, no. 1, 1960, pp. 226-858.
Eringen A.C. Microcontinuum Field Theory. Vol. 1. Foundations and Solids. New York, Springer, 1999, 325 p.
Lakes R.S. Experimental methods for study of Cosserat elastic solids and other generalized continua. Continuum models for materials with micro-structure, vol. 1, 1995, p. 1-22.
Eremeyev V.A., Lebedev L.P., Altenbach H. Foundations of Microplar Mechanics. Springer Briefs in Applied Sciences and Technology, 2012, pp. 1-10. DOI:10.1007/978-3-642-28353-6.
Altenbach H., Eremeyev V.A. Generalized Continua from the Theory to Engineering Applications. CISM International Centre for Mechanicsl Sciences, vol. 541, 2013, 388 p.
Nikabadze M., Ulukhanyan A., Sakhvadze G. To the mathematical modeling of deformation of micropolar thin bodies with two small sizes. Journal of Physics: Conference Series, 2019, art. no. 012040.
Nikabadze M.U. Nekotorye varianty uravnenij mikropolyarnyh teorij obolochek [Some versions of the equations of micropolar shell theories]. Prikladnaya matematika i matematicheskaya fizika [Applied Mathematics and MathematicalPhysics], 2015, vol. 1, no. 1, pp. 101-118.
Kohn R.V., Vogelius M. A new model of thin plates with rapidly varying thickness. International Journal Solids and Struct, 1984, vol. 20, no. 4, pp. 333-350.
Shenin S.V. Asymptotic analysis of plates with periodic cross–sections. Mechanics, 2006, vol. 6, iss. 6, pp. 71-79.
Levinski T., Telega J.J. Plates, laminates and shells. Asymptotic analysis and homogenization. Singapore, London, World Scintific Publishing, 2000, 739 p.
Kolpakov A.G. Stressed composite structures: Homogenized models for thinwalled nonhomogeneous structures with initial stresses. Berlin, Springer Verlag, 2004, 228 p.
Nazarov S.A., Sweers G.H., Slutskij A.S. omogenization of a thin plate reinforcedwith periodic families of rigid rods. Sbornik: Mathematics, 2011, vol. 202, iss. 8, pp. 1127–1168.
Dimitrienko Yu.I. Asymptotic theory of multilayer thin plates. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2012, no. 3, pp. 86–99.
Dimitrienko Yu.I., Yakovlev D.O. The asymptotic theory of thermoelasticity of multilayer composite plates. Composites: Mechanics, Computations, Applications, 2015, vol. 6, iss. 1, pp. 13–51.
Dimitrienko Y.I., Gubareva E.A., Yurin Y.V. Asymptotic theory of thermocreepfor multilayer thin plates. Маthematical Modeling and Computational Methods, 2014, no. 4, pp. 18–36.
Dimitrienko Y.I., Gubareva E.A., Sborschikov S.V. Asymptotic theory of constructive-orthotropic plates with two-periodic structures. Маthematical Modeling and Computational Methods, 2014, no. 1, pp. 36–56.
Dimitrienko Yu.I., Dimitrienko I. D., Sborschikov S.V. Multiscale Hierarchical Modeling of Fiber Reinforced Composites by Asymptotic Homogenization Method. Applied Mathematical Sciences, 2015, vol. 9, iss. 145-148, рр. 7211–7220.
Dimitrienko Yu.I., Dimitrienko I. D. Modeling of the thin composite laminates with general anisotropy under harmonic vibrations by the asymptotic homogenization method. Journal for Multiscale Computational Engineering, 2017, vol. 15, iss. 3, pp. 219–237.
Dimitrienko Yu.I., Gubareva E.A., Pichugina A.E., Bel’kova K.V., Borin D.M. Modeling of thermal stresses in composite shells based on asymptotic theory. Part 2. Calculation of cylindrical shells. Маthematical Modeling and Computational Methods, 2022, no. 4, pp. 3–30.
Dimitrienko Yu.I. Tenzornoe ischislenie [Tensor calculus]. Moscow, HigherSchool Publ., 2001, 576 p.
Dimitrienko Yu.I. Mekhanika sploshnoj sredy. T. 1. Tenzornyj analiz [Continuum Mechanics. Vol. 1. Tensor analysis. Moscow, BMSTU Publ., 2011, 367 p.


Димитриенко Ю.И., Бойко С.В. Асимптотическая теория многослойных тонких микрополярных упругих пластин. Математическое моделирование и численные методы, 2023, № 2, с. 33–66.



Download article

Количество скачиваний: 116