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Рассматривается задача о построении теории расчета напряженно-деформиро-

ванного состояния тонких многослойных упругих пластин в моментной (микропо-

лярной) теории упругости. Решение данной задачи строится с помощью асимпто-

тического анализа общих уравнений 3-х мерной квазистатической задачи момент-

ной теории упругости. Асимптотический анализ проводится по малому геометри-

ческому параметру, равному отношению толщины пластины к ее характерной 

длине. Получены рекуррентные формулировки локальных задач моментной теории 

упругости. Для этих задач получены явные аналитические решения. Представлен 

вывод осредненной системы уравнений равновесия многослойных пластин. Пока-

зано, что асимптотическая теория позволяет получить явное аналитическое вы-

ражение для всех 9 (в общем случае) компонент тензоров напряжений и моментных 

напряжений в пластине.  Как частный случай рассмотрена задача о расчете напря-

женно-деформированного состояния центрально-симметричной шарнирно опер-

той пластины при изгибе под действием равномерно распределенного давления. По-

лучено полное аналитическое решение этой задачи для всех ненулевых компонент 

тензоров напряжений и моментных напряжений. Проведен численный анализ реше-

ния задачи для тензора напряжений в случае однослойной пластины на основе полу-

ченных выражений. Проведен сравнительный анализ полученных результатов с ана-

логичными расчетами для классической теории, выявлены сходства и различия для 

всех компонент тензора напряжений. 

 

Ключевые слова: асимптотическая теория, малый параметр, микрополярная тео-

рия, тонкие пластины, изгиб, тензор напряжений 

  

Введение. В настоящее время в задачах расчета напряженно-де-

формируемых состояний конструкций, как правило, используется 

классическая теория симметричной упругости, в которой отсутствуют 

моментные напряжения, и тензор напряжений Коши является симмет-

ричным [1-7]. Для подавляющего большинства конструкционных ма-

териалов эта теория дает результаты, достаточно хорошо совпадаю-

щие с экспериментами. Этим объясняется ее широкое использование.  

Однако, в некоторых задачах механики возникают эффекты, кото-

рые не описываются теорией симметричной упругости [2]. Как из-

вестно, впервые теория несимметричной (моментной) упругости была 

предложена в работах братьев Коссера [8]. Интерес к той теории был 

проявлен только в середине прошлого столетия [9], а в настоящее 

время наблюдается повышение активности исследований в области 

теории несимметричной упругости, называемой также микрополяр-

ной теорией упругости [10-13]. 
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В работах [12-15] предложены различные подходы к построению 

теории тонких микрополярных упругих сред (пластин, стержней, обо-

лочек): основанных на аналогах классической теории тонких тел с до-

пущением о характере распределения перемещений и микро-враще-

ний по толщине [12] или на разложении всех основных функций по 

ортогональным полиномам [14,15]. 

В работах [16-27] разработан иной подход к выводу уравнений для 

механики тонких тел, основанный на асимптотических разложениях 

по малому геометрическому параметру. В работах [21-26] рассмотрен 

случай многослойной пластины в классической теории, и с помощью 

асимптотического метода выведена теоретическая основа для решения 

задач, позволяющая вычислить все компоненты симметричного тен-

зора напряжений посредством решения рекуррентной последователь-

ности двумерных задач. Аналогичный метод применен для построе-

ния асимптотической теории тонких оболочек [27]. 

Данная работа посвящена применению асимптотической теории 

для решения задач моментной теории упругости многослойных упру-

гих пластины.  

1. Общие уравнения теории несимметричной упругости и ос-

новные допущения для тонких пластин. Рассмотрим многослойную 

пластину постоянной толщины, и, следуя [21-27], введем малый пара-

метр 1
h

L
    как отношение общей толщины пластины h  к харак-

терному размеру всей пластины L  (например, к ее максимальной 

длине). Введем также глобальные , 1,2,3k
k

x
x k

L
   и локальную 

3x



  координаты, где 

kx  — обычные декартовы координаты, ори-

ентированные таким образом, что ось 
3Ox  направлена по нормали к 

внешней и внутренней плоскостям пластины, а оси 
1 2,Ox Ox  принад-

лежат срединной поверхности пластины. Координата   по толщине 

пластины изменяется в диапазоне 0.5 0.5   , внешние поверхно-

сти пластины обозначим как 
3 { 0.5}    . 

Рассмотрим в системе координат 
kOx  трехмерную задачу момент-

ной теории упругости [2] для квазистатического случая, записанную в 

безразмерном виде для многослойных пластин при малых деформа-

циях 
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Эта задача состоит из уравнений равновесия, уравнения моментов, 

определяющих соотношений для тензоров напряжений и моментных 

напряжений, кинематических соотношений для тензоров деформации 

и изгиба-кручения, граничных условий на внешней, внутренней и тор-

цевой поверхностях пластины, а также граничных условий на поверх-

ности контакта слоев пластины. В системе (1) обозначены компоненты 

следующих векторов: 
iu  — вектора перемещений, 

ik  — вектора по-

ворота, 
if  — вектора плотности внешних массовых сил, 

mih  — век-

тора плотности внешних массовых моментов, 
iS
 — вектора внешних 

поверхностных сил, заданного на внешних поверхностях пластины 

3 , 
im
 — вектора внешних поверхностных моментов, 

eiu  — век-

тора перемещений, заданных на торцевой поверхности 
T  пластины, 

eik  — вектора поворота, заданного на 
T , а также компоненты следу-

ющих тензоров 2-го ранга: 
ij  — несимметричного тензора напряже-

ний, 
ijM  — тензора моментных напряжений, 

kl  — несимметричного 

тензора деформации и 
kl

— тензора изгиба-кручения.  Упругие свой-

ства слоев задаются  компонентами тензоров 4–го ранга: 
ijklC  — тен-

зора модулей упругости, 
ijklB  — тензора смешанных модулей упруго-

сти и 
ijklA  — тензора модулей моментной упругости. Эти тензоры яв-

ляются функциями координат  . В системе (1) также обозначены: 
kji  

— компоненты тензора Леви-Чивиты и j

jx


 


 — производные по 
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декартовым координатам. Все компоненты рассматриваются в декар-

товом базисе, связанном с системой координат 
kOx ,  [ ]iu  — означает 

скачок функции на поверхностях раздела слоев пластины 

{ , 1,..., 1}S s s N      , где N  — число слоев в пластине. 

Принимаем далее допущение, подобное тому, которое вводится в 

асимптотической теории классических упругих тонких пластин [21-

27]: на внешних поверхностях 
3  поверхностные силы 

eiS заданы в 

виде давления p
, и их величина имеет третий порядок малости отно-

сительно малого параметра  , для  внешних поверхностных моментов  

задаем асимптотическое разложение по малому параметру общего 

вида: 

 
3ei iS p   , 3p p  , (2) 

 (1) 2 (2) ...i im m m       (3) 

где p
, 

( )n

im   — безразмерные функции, имеющие порядок (1)O ,  в 

общем случае являются функциями глобальных координат. В частном 

случае p
 и 

( )n

im   могут быть константами (равномерные давление и 

моменты, действующее на пластину). 

Условие (2), как правило, соответствует условиям нагружения ре-

альных тонких пластин. Внешние поверхностные моменты на внеш-

ней и внутренней поверхностях пластины в общей теории рассматри-

ваем в виде разложения по малому параметру, в конкретных задачах 

часть функций 
( )n

im   может обнуляться.  

2. Асимптотическое решение задачи моментной теории упру-

гости для тонких пластин. Решение задачи (1) будем искать в виде 

асимптотических разложений по параметру  , подобно (3), в виде 

функций, зависящих от глобальных и локальной координат 

(0) (1) 2 (2) 3 (3)

(0) (1) 2 (2) 3 (3)

(0) (1) 2 (2) (0) (1) 2 (2)

(0) (1)

( ) ( , ) ( , ) ( , ) ...,

( ) ( , ) ( , ) ( , ) ...,

..., ...,

k k I k I k I k I

k k I k I k I k I

ji ji ji j

i

j i ji ji ji

ij j ij

i

u u x u x u x u x

k k x k x k x k x

     

     

      

   

    

    

     

 

 


2 (2) (0) (1) 2 (2)

..., ...,ij ij ij ij ijM M M M      

 (4) 

Здесь и далее индексы, обозначенные заглавными буквами 

, , ...I J K , принимают значения 1, 2, а индексы, обозначенные строч-

ными буквами , , ...i j k  — значения 1, 2, 3.  

Будем далее использовать обозначения для производных по ло-

кальной координате и по глобальным координатам от функций (4) 



Асимптотическая теория тонких многослойных микрополярных упругих пластин 

37 

 /3

( , )
( , ) I

I

f x
f x










, 

,

( , )
( , ) I

I J

J

f x
f x

x








, (5) 

при этом имеет место следующее правило согласования производных   

i f , 
/3f  и 

/ If : 1

3 /3 /i i iJ Jf f f     , где 
ij  — символ Кронекера. 

Введем также следующие операции интегрирования по локальной ко-

ординате: 

 
0.5

0.5

( , )If f x d 


   , (6) 

 
0.5 0.5

( , ) ( , )I If x d f x d

 

    
 

      f , 

 
0.5

{ } ( ( , ) )If x d



  


   f f .         

Подставим разложения в (4) для векторов перемещений и пово-

рота в кинематические соотношения в системе (1), тогда получим ки-

нематические соотношения для n-го приближения 

 

( ) ( ) ( ) ( 1)

, 3 /3

( ) ( ) ( ) ( ) ( 1) ( )

, 3 /3 3

,     ,

,     ,

n n n n

Ji i J i i

n n n n n n

Ji i J kJi k i i k i k

k k

u k u k   





 

   
0,1,2,...n   (7) 

Подставляя соотношения (7) в определяющие соотношения в си-

стеме (1), получаем определяющие соотношения для n -го приближе-

ния: 

 

( ) ( ) ( )

( ) ( ) ( )

,

,

n n n

ij ijkl kl ijkl kl

n n n

ij klij kl ijkl kl

С B

M B A

 



 

 
 0,1,2,...n   (8) 

Формулировки локальных задач для микрополярных пла-

стин. Подставляя разложения (4) в уравнения равновесия, уравнения 

моментов и граничные условия системы (1) и приравнивая в уравне-

ниях равновесия члены при 1   к нулю, а при остальных степенях   

к некоторым величинам (0) (0) (1) (1) (2) (2)( , ), ( , ), ( , ),...i i i i i ih g h g h g , не зависящим от 

 , получим рекуррентную последовательность локальных задач.  

Задача для нулевого приближения имеет вид 

 (0)

3 /3 0i  , (0)

3 /3 0iM  , 

 (0) (0) (0) (0) (0)

3 3 3 3 3 3 3 3 3i iKl Kl i l l iKl Kl i l lС С B B      , 



Ю.И. Димитриенко, С.В. Бойко 

38 

 (0) (0) (0) (0) (0)

3 3 3 3 3 3 3 3 3i iKl Kl i l l iKl Kl i l lM B B A A     , 

 (0) (0) (0) (0) (0)

3 3 3 3Ji JiKl Kl Ji l l JiKl Kl Ji l lС С B B      , 

 (0) (0) (0) (0) (0)

3 3 3 3Ji JiKl Kl Ji l l JiKl Kl Ji l lM B B A A     , 

 
(0) (0)

,Kl l Kk , (0) (1)

3 /3l lk , 

 
(0) (0) (0)

,Kl l K mKl mu k   , (0) (1) (0)

3 /3 3l l m l mu k   , 

 

(0) (0)

3 3 3

(0) (0)

3 3

(1) (1)

(1) (1)

: 0, 0,

 :[ ] 0, [ ] 0,

[ ] 0, [ ] 0,

0, 0,

i i

S i i

i i

i i

M

M

u k

u k





  

  

 

   

 (9) 

а для более высоких приближений 1n   локальные задачи выглядят 

следующим образом: 

 
( ) ( 1) ( 1)

3 /3 , 1

n n n

i Ji J i n if h       , 

 
( ) ( 1) ( 1) ( 1)

3 /3 , 1i

n n n n

i Ji J ijk jk m n iM M h g         , 

 ( ) ( ) ( ) ( ) ( )

3 3 3 3 3 3 3 3 3

n n n n n

i iKl Kl i l l iKl Kl i l lС С B B      , 

 ( ) ( ) ( ) ( ) ( )

3 3 3 3 3 3 3 3 3

n n n n n

i iKl Kl i l l iKl Kl i l lM B B A A     , 

 ( ) ( ) ( ) ( ) ( )

3 3 3 3

n n n n n

Ji JiKl Kl Ji l l JiKl Kl Ji l lС С B B      , 

 ( ) ( ) ( ) ( ) ( )

3 3 3 3

n n n n n

Ji JiKl Kl Ji l l JiKl Kl Ji l lM B B A A     , 

 

( ) ( ) ( ) ( 1)

, 3 /3

( ) ( ) ( ) ( ) ( 1) ( )

, 3 /3 3

( ) ( ) ( )

3 3 3 3 3

( ) ( )

3 3

( 1) ( 1)

( 1) ( 1)

, ,

, ,

: , , 

:[ ] 0, [ ] 0,

[ ] 0, [ ] 0,

0, 0.

n n n n

Kl l K l l

n n n n n n

Kl l K mKl m l l m l m

n n n

i i n i i

n n

S i i

n n

i i

n n

i i

k k

u k u k

p M m

M

u k

u k

   

  







  

 

 

 

   

    

  

 

   

 (10) 

Уравнения равновесия и уравнения моментов в (1) после введения 

функций ( 1) ( 1)( , )n n

i ih g   принимают вид 

 

(0) (1) 2 (2)

(0) (1) 2 (2)

... 0,

... 0.

i i i

i i i

h h h

g g g

 

 

   

   
 (11) 
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Решением локальной задачи нулевого приближения (9) являются 

функции (1) (1),i iu k , они зависят от локальной координаты   и входных 

данных этой задачи — перемещений (0) ( )i Ju x  и поворота (0) ( )i Jk x . Реше-

нием локальных задач (10) являются функции ( 1) ( 1),n n

i iu k  , а ( ) ( ),n n

i iu k   в 

этих задачах - входные данные. 

Решение локальных задач нулевого приближения. Рассмотрим 

локальную задачу (9). Решение уравнений равновесия и уравнений мо-

ментов с граничными условиями в этой задаче имеет вид  

 (0)

3 0i  , (0)

3 0iM  , 0.5 0.5   . (12) 

Подставляя сюда соотношения для (0)

3i  и (0)

3iM  из системы  (9), по-

лучаем 

 

(0) (0) (0) (0)

3 3 3 3 3 3 3 3

(0) (0) (0) (0)

3 3 3 3 3 3 3 3

0,

0.

iKl Kl i l l iKl Kl i l l

Kl i Kl l i l iKl Kl i l l

С С B B

B B A A

 

 

   

   
 (13) 

Разрешим эту систему относительно 
(0)

3l и 
(0)

3l  

 

(0) (0) (0)

3 3 3

(0) (0) (0)

3 3 3

,

,

l lKs Ks lKs Ks

l lKs Ks lKs Ks

G H

W V

 



  

  
 (14) 

где введены обозначения для тензоров, которые зависят только от тен-

зоров модулей упругости 
ijklC ,

ijklB  и 
ijklA  

 
{11} {12}

3 3 3lKs lj jKs lj jKsG X C X B  , 
{11} {12}

3 3 3lKs lj jKs lj jKsH X B X A  , 

 
{21} {22}

3 3 3lKs lj jKs lj jKsW X C X B   , 
{21} {22}

3 3 3lKs lj jKs lj jKsV X B X A   , 

 
{11} 1 1 1 1

3 3 3 3 3 3 3 3lj l j l q q p pm m jX C C B D B     , 
{12} 1 1

3 3 3 3lj l q q p pjX C B D  , (15) 

 
{21} 1 1

3 3 3 3lj lq q p p jX D B C  , 
{22} 1

lj ljX D , 

 
1

3 3 3 3 3 3 3 3 ,im i m i l l j j mD A B C B   

а 1

3 3i lC   — матрица компонент, обратная к 
3 3i lC . 

Рассмотрим в системе (9) уравнения, связывающие (0)

3l  и (0)

3l
 и 

векторы перемещений и поворота,  и присоединим к этим уравнениям 

условия нормировки из (9) 

 

(1) (0) (1)

/3 3

(1) (0) (0) (1)

/3 3 3

,   0,

,   0.

l l l

l l m l m l

k k

u k u 

  

   
 (16) 
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Решим эти дифференциальные уравнения относительно (1)

lk  и (1)

lu  

 
(1) (0)

3l lk   , 
(1) (0) (0)

3 3l l m l mu k     , (17) 

здесь учтено, что 
(0) (0)

m mk k    .   

Подставим в (17) вместо (0)

3l  и (0)

3l
 их выражения согласно фор-

мулам из (14), тогда получим итоговые соотношения между переме-

щениями и поворотами 1-го приближения через тензоры деформации 
(0)

Ks  и   изгиба-искривления (0)

Ks
 0-го приближения 

 

(1) (0) (0) (0)

3 3 3

(1) (0) (0)

3 3

,

.

l lKs Ks lKs Ks m l m

l lKs Ks lKs Ks

u G H k

k W V

 

 

  



       

      
 (18) 

Подставляя выражения (14) для (0)

3l  и (0)

3l
 в определяющие соот-

ношения (8) при n=0, получим компоненты тензоров напряжений 
(0)

Ij  

и моментных напряжений (0)

IjM  нулевого приближения через (0)

Ks  и 

(0)

Ks
: 

 

(0) (0) (0) (0) (0)

(0) (0) (0) (0) (0)

,

,

Ij IjKl Kl IjKl Kl

Ij IjKl Kl IjKl Kl

С B

M B A

 



 

 
 (19) 

где введены обозначения для приведенных модулей упругости 

 

(0)

3 3 3 3

(0)

3 3 3 3

(0)

3 3 3 3

(0)

3 3 3 3

,

,

,

.

IjKl IjKl Ij p pKl Ij p pKl

IjKl IjKl Ij p pKl Ij p pKl

IjKl IjKl Ij p pKl Ij p pKl

IjKl IjKl Ij p pKl Ij p pKl

С С С G B W

B B B V C H

B B B G A W

A A A V B H

  

  

  

  

 (20) 

Таким образом, формулы  (12)–(20) образуют искомое решение за-

дачи нулевого приближения, так как найдены все компоненты вектора 

перемещений (1)

lu  и поворота (1)

lk  первого приближения, а также все 

компоненты тензоров напряжений (0)

3i , 
(0)

Ij  и моментных напряжений 

(0)

3iM , (0)

IjM  нулевого приближения в виде функций, зависящих только 

от (0)

3l
 и (0)

3l , которые, в свою очередь, зависят только от входных 

данных задачи (0)

lu  и (0)

lk . 

Решение локальных задач высоких приближений. Рассмотрим 

решение локальных задач (10) более высоких приближений. Решения 

уравнений равновесия и уравнений моментов в этих задачах вместе с 
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соответствующими им граничными условиями выглядят следующим 

образом: 

 

( ) ( 1) ( 1)

3 3 3 , 1

0.5

( ) ( ) ( 1) ( 1) ( 1)

3 , 1

0.5

( ) ( 0.5)

( ) ( 0.5)

1

i

n n n

i i n Ji J i n i

n n n n n

i i Ji J ijk jk m n i

p f d h

M m M h d g

n





       

     

 





  






      





       








 (21) 

Условия существования решений (21), удовлетворяющих гранич-

ным условиям в системе (10) на внешней поверхности пластины 

0.5  , приводят к следующим уравнениям для вычисления функций 

( 1) ( 1)( , )n n

i ih g  : 

 

( 1) ( 1)

3 ( 1)2 , ( 1)0

( 1) ( ) ( 1) ( 1)

, ( 1)0

,

1

i

n n

i i n Ji J i n

n n n n

i i ijk jk Ji J m n

h p f

g m M h

n

    

   

 

 

  



        


          



 (22) 

где обозначены: p p p    , ( ) ( ) ( )n n n

i i im m m    . 

С учетом (22) уравнения (21) принимают вид: 

 

( ) ( 1)

3 3 3 , ( 1)0

( ) ( ) ( ) ( 1) ( 1)

3 , ( 1)0

( ( 0.5)) { } { }
,

( ( 0.5)) { } { } { }

1

i

n n

i i n Ji J i n

n n n n n

i i i Ji J ijk jk m n

p p f

M m m M h

n

 

  

      

    



 

 

 

       


       



 (23) 

Уравнения (23) представляют собой частичное решение локаль-

ных задач n -го приближения для компонент тензоров напряжений 
( ) ( )

3 3,n n

i iM , так как они выражены только через входные данные 

( 1) ( 1),n n

ij ijM  
 соответствующих задач. Для полного решения задач 

нужно найти остальные компоненты тензоров 
( ) ( ),  n n

Ij IjM  посредством 

составления систем из выражений (22) и определяющих и кинемати-

ческих соотношений в (10).  

Рассмотрим в системе (10) группы определяющих соотношений 

для 
( )

3

n

i  и 
( )

3

n

iM , запишем их по аналогии с (13) в следующей форме 

 

( ) ( ) ( ) ( ) ( )

3 3 3 3 3 3 3 3 3

( ) ( ) ( ) ( ) ( )

3 3 3 3 3 3 3 3 3

,

,  1

n n n n n

i iKl Kl i l l iKl Kl i l l

n n n n n

i Kl i Kl l i l iKl Kl i l l

С С B B

M B B A A n

  

 

   

    
 (24) 

Выразим из этих соотношений ( )

3

n

l  и ( )

3

n

l
, тогда получим фор-

мулы аналогичные (14) 
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( ) ( ) ( ) {11} ( ) {12} ( )

3 3 3 3 3

( ) ( ) ( ) {21} ( ) {22} ( )

3 3 3 3 3

,n n n n n

l lKs Ks lKs Ks lj j lj j

n n n n n

l lKs Ks lKs Ks lj j lj j

G H X X M

W V X X M

  

 

    

    
 (25) 

Рассмотрим в системе (10) дифференциальные уравнения, связы-

вающие  ( )

3

n

l  и ( )

3

n

l
 с векторами перемещений ( 1)n

lu   и поворота ( 1)n

lk  ,  

вместе с условиями нормировки. Интегрируя эти уравнения, получаем 

формулы аналогичные (17)  

 
( 1) ( ) ( )

3 3

n n n

l l m l mu k        , 
( 1) ( )

3

n n

l lk 

   , 1n  . (26) 

Подставляя в (26) вместо ( )

3

n

l  и ( )

3

n

l
 их выражения согласно фор-

мулам из (25), получаем итоговые соотношения между перемещени-

ями и поворотами (n+1)-го приближения через тензоры деформации 
( )n

Ks  и   изгиба-искривления ( )n

Ks
 n-го приближения 

 

( 1) ( ) ( ) {11} ( )

3 3 3

{12} ( ) ( )

3 3

( 1) ( ) ( )

3 3

{21} ( ) {22} ( )

3 3

,

,

1

n n n n

l lKs Ks lKs Ks lj j

n n

lj j m l m

n n n

l lKs Ks lKs Ks

n n

lj j lj j

u G H X

X M k

k W V

X X M

n

  

 

 

 

 











        

     

     

     



 (27) 

В эти соотношения входят сдвиговые напряжения ( )

3

n

i  и ( )

3

n

iM , ко-

торые вычисляются по рекуррентным формулам (23). Деформации 
( )n

Ks  и изгиба-кручения ( )n

Ks
 n-го в этих формулах вычисляются через  

( )n

lu  и поворота ( )n

lk  согласно формулам из (10), и тем самым формулы 

(27) также становятся рекуррентными.  

Подставляя выражения (25) для ( )

3

n

l  и ( )

3

n

l
в определяющие соот-

ношения системы  (10), получим формулы для компонентов тензоров 

напряжений 
(0)

Ij  и моментных напряжений (0)

IjM  n-го приближения че-

рез (0)

Ks  и (0)

Ks
: 

 

( ) (0) ( ) (0) ( ) {11} ( ) {12} ( )

3 3

( ) (0) ( ) (0) ( ) {21} ( ) {22} ( )

3 3

,

,

n n n n n

Ij IjKl Kl IjKl Kl Ijp p Ijp p

n n n n n

Ij IjKl Kl IjKl Kl Ijp p Ijp p

С B Z Z M

M B A Z Z M

  

 

   

   
 (28) 

где обозначены 

 

{11} {11} {21} {12} {12} {22}

3 3 3 3

{21} {21} {11} {22} {22} {12}

3 3 3 3

,   ,

,   .

Ijp Ij l lp Ij l lp Ijp Ij l lp Ij l lp

Ijp Ij l lp Ij l lp Ijp Ij l lp Ij l lp

Z С X B X Z С X B X

Z A X B X Z A X B X

   

   
 (29) 



Асимптотическая теория тонких многослойных микрополярных упругих пластин 

43 

Выражения решения первого приближения через нулевое 

приближение. Запишем формулы (23) для случая 1n   

 

(1) (0)

3 ,

(1) (1) (1) (0) (0)

3 ,

{ } { } ,

( ( 0.5)) { } { } { } .

i Ji J i

i i i Ji J iIj Ij mi

f

M m m M h

 

  

  

   

   


       

 (30) 

Подставим выражения (19) в формулы (30), тогда получим 

 

(1) (0) (0) (0) (0)

3 , ,

(1) (1) (1) (0) (0) (0) (0)

3 , ,

(0) (0) (0) (0)

{ } { } { }

( ( 0.5)) { } { }

{ } { } { } ,

j IjKl Kl I IjKl Kl I j

j j j IjKl Kl I IjKl Kl I

jIi IiKl Kl jIi IiKl Kl mj

С B f

M m m B A

С B h

  

 

  

  

 

   



    


       


  

 (31) 

— выражения для сдвиговых напряжений и моментных напряжений 

1-го приближения через тензоры деформации (0)

Kl   и изгиба-кручения 
(0)

Kl
 0-го приближения. 

          Запишем теперь соотношения системы (10) между (1)

Kl
, (1)

Kl

и (1)

lu , (1)

lk  для случая 1n  , используя формулы (18) 

 

(1) (1) (0) (0)

, 3 , 3 ,

(1) (1) (1) (0) (0)

, 3 , 3 ,

(0) (0) (0)

3 , 3 3

,Kl l K lMs Ms K lMs Ms K

Kl l K mKl m lMs Ms K lMs Ms K

m l m K jKl jKs Ks jKl jKs Ks

k W V

u k G H

k W V

 

 

 



  

    

       

         

      

 (32) 

В результате получим выражение тензоров деформации (1)

Kl  и из-

гиба-кручения (1)

Kl
 1-го приближения через тензоры 0-го приближе-

ния. 
Подставляя (32) в соотношения (28) для случая 1n  , получаем 

выражения для напряжений и моментных напряжений 1-го приближе-
ния через тензоры 0-го приближения 

(1) (1) (0) (1) (0) (1) (0) (1) (0) (1) (0) (1)

, , ,

(1) (1) (0) (1) (0) (1) (0) (1) (0) (1) (0) (1)

, , ,

,

.

Ij IjKMs Ms K IjKMs Ms K IjKm m K IjMs Ms IjMs Ms Ij

m

Ij IjKMs Ms K IjKMs Ms K IjKm m K IjMs Ms IjMs Ms Ij

С B N k R Z Г

M B A N k R Z Г

  

 

      

      
 (33) 

Здесь учтены формулы (12) и введены обозначения 

 
(1) (0) (0) {11} (0) {12} (0)

3 3 { } { }IjKMs IjKl lMs IjKl lMs Ijp KpMs Ijp KpMsС С G B W Z С Z B           , 

 
(1) (0) (0) {11} (0) {12} (0)

3 3 { } { }IjKMs IjKl lMs IjKl lMs Ijp KpMs Ijp KpMsB С H B V Z B Z A           , 

 
(1) (0) (0) {21} (0) {22} (0)

3 3 { } { }IjKMs IjKl lMs IjKl lMs Ijp KpMs Ijp KpMsB B G A W Z С Z B           , 

 
(1) (0) (0) {21} (0) {22} (0)

3 3 { } { }IjKMs IjKl lMs IjKl lMs Ijp KpMs Ijp KpMsA B H A V Z B Z A           , 

 
(1) (0)

3IjKm IjKp m pN С  , 
(1) (0)

3IjKm IjKp m pN B  , 
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(1) (0) {12} (0)

3 { }IjMs IjKl pKl pMs Ijp pKi KiMsR С W Z С      , (34) 

 
(1) (0) {12} (0)

3 { }IjMs IjKl pKl pMs Ijp pKi KiMsZ С V Z B      , 

 
(1) (0) {21} (0)

3 { }IjMs IjKl pKl pMs Ijp pKi KiMsR B W Z С      , 

 
(1) (0) {22} (0)

3 { }IjMs IjKl pKl pMs Ijp pKi KiMsZ B V Z B      , 

 
(1) {11} {12} {12} (1) (1){ } { } ( ( 0.5))Ij Ijp p Ijp mp Ijp p pГ Z f Z h Z m m         , 

 
(1) {21} {22} {22} (1) (1){ } { } ( ( 0.5))m

Ij Ijp p Ijp mp Ijp p pГ Z f Z h Z m m         . 

Выражения решения второго приближения через нулевое 

приближение. Запишем формулы (23) случая 2n  , причем ограни-

чимся рассмотрением только напряжений (2)

3i  и моментных напряже-

ний (2)

3iM  

 

(2) (1)

3 ,

(2) (2) (2) (1) (1) (1)

3 , 3 3

{ }

( ( 0.5)) { } { } { }

i Ji J

i i i Ji J i k k iMk MkM m m M



  

 

    

  


       

 (35) 

После подстановки в эти выражения формул (31) и (34), получаем 

 

(2) (1) (0) (1) (0) (1) (0)

3 , , ,

(1) (0) (1) (0)

, ,

(2) (1) (0) (1) (0) (1) (0)

3 , , ,

(0)

,

{ } { } { }

{ } { } ,

{ } { } { }

j IjKMs Ms KI IjKMs Ms KI IjKm m KI

IjMs Ms I IjMs Ms I

j IjKMs Ms KI IjKMs Ms KI IjKm m KI

jKMs Ms K

С B N k

R Z

M B A N k

Q

  

 

  

 







   

 

   

  (0) (0) (0)

,

(2) (2)

3 {{ } } ( ( 0.5)),

jKMs Ms K jMs Ms jMs Ms

j i i j j

S P Y

f m m 



  








  


    

 (36) 

где введены обозначения 

 
(0) (1) (1)

3 {{ } } { } { }jKMs j i KiMs jJi JiKMs KjMsQ С С R       , 

 
(0) (1) (1)

3 {{ } } { } { }jKMs j i KiMs jJi JiKMs KjMsS B B Z       , (37) 

 
(1){ }jMs jIp IpMsP R  , 

(1){ }jMs jIp IpMsY Z  . 

Запишем формулы (38) случая 1n   

 

(2) (1) (1) {11} (1)

3 3 3

{12} (1) (1)

3 3

(2) (1) (1)

3 3

{21} (1) {22} (1)

3 3

,

,  1.

l lKs Ks lKs Ks lj j

lj j m l m

l lKs Ks lKs Ks

lj j lj j

u G H X

X M k

k W V

X X M n

  

 

 

 

 







        

     

     

      

 (38) 
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Подставим в эти формулы выражения (32) для (1)

Kl
, (1)

Kl  и (1)

lk , а 

также выражения (31) для 
(1)

3 j  и (1)

3 jM . 

Осредненные уравнения для микрополярных тонких пластин. 

Подставляя выражения (22) для функций ( 1) ( 1)( , )n n

i ih g   в уравнения рав-

новесия и уравнения моментов (11), получаем 

 

(0) (1) 2 (2)

, , , 3

(0) (0) (0) (1)

, 3 3

(1) (1) (1) (2)

, 3 3

( ) ( ) ... 0,

( )

( ) ... 0.

Ji J i Ji J Ji J i

Ji J i k k iJk Jk mi i

Ji J i k k iJk Jk i

f p

M h m

M m

      

    

    

             

            

           

 (39) 

Домножим изначальные уравнения движения и моментов в си-

стеме (1) на  , подставим в них асимптотические разложения (4) и 

проинтегрируем по толщине (по локальной координате   от 0.5  до 

0.5 ): 

 

(0) (1) 2 (1) (2)

, 3 , 3

(0) (1) (0) (0)

, 3 3 3

(1) (1) 2 (1) (2)

, 3

(1) (1) (

3 3

( ) ( ) ... 0,

(

( 0.5 ) ) (

(

i

Ji J i i Ji J i

Ji J i i k k iJk Jk

i i m Ji J i

i k k iJk Jk i

f

M M

m m h M M

m

      

     

  

   



               

           

             

       2) (2)0.5 )) ... 0im    

 (40) 

Здесь учтено, что, (1) (1)

3 /3 3i i      , (2) (2)

3 /3 3i i      , 
( ) ( ) ( ) ( )

3 /3 3( 0.5 ) , 1n n n n

i i i iM m m M n          .  

Введем обозначения для усилий 
JIT , моментов 

ji  и перерезыва-

ющих сил , *J JQ Q  в пластине (с учетом несимметричности тензора 

напряжений), а также для моментных усилий 
m

jiT , моментов момент-

ных напряжений 
m

ji  и перерезывающих моментных напряжений 

*,m m

J JQ Q : 

 

(0) (1)

(0) (1)

3 3 3

(1) 2 (2)

3 3 3

(0) 2 (1)

...,

...,

* ...,

...,

JI JI JI JI

J J J J

J J J J

ji ji ji ji

T

Q

Q

   

   

    

      

      

      

       

        

 

 

(0) (1)

(0) (1)

3 3 3

* (1) 2 (2)

3 3 3

(0) 2 (1)

...,

...,

...,

...

m

JI JI JI JI

m

J J J J

m

J J J J

m

JI JI JI JI

T M M M

Q M M M

Q M M M

M M M





 

     

      

      

       

       

 (41) 
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Тогда уравнения (39) и (40) можно записать в следующем виде, 

близком к традиционному виду записи уравнений равновесия и мо-

ментов в классической теории упругости пластин: 

 

,

, 3

*

,

0,

,

0,

e

JI J I

e

I I

e

JI J I I

T F

Q F p

Q 

 

  

  

 

 
*

, 3 ( )m e

JI J I K K K I IT Q Q M m     , (42) 

 , 12 21 3 3

m e

J JQ T T M m     , 

 
*

, 3 3 3( )m m me m

JI J I I K K K I IQ m          , 

здесь введены следующие обозначения для внешних массовых сил и 

моментов, действующих на тонкие пластины: 

e

i iF f  , e

I If     , e

i miM h  , me

I mIh     , 

 

2 (1) (2)

(1) (1) 2 (2) (2)

1 1

,   ...,

( 0.5 ) ( 0.5 ) ...

i i i

m

I I I

p p m m m

m m m m m

 

  

        

       
 (43) 

Выведем осредненные определяющие соотношения для микропо-

лярных тонких пластин. Подставим выражения (19) и (31) для  тензо-

ров напряжений и моментных напряжений 0-го и 1-го приближения 
(0)

Ij , 
(0)

IjM  и 
(1)

Ij , 
(1)

IjM  в (41), тогда, сохраняя главные члены асимпто-

тических разложений (до первого порядка), получим следующие соот-

ношения: 

 

(0) (0) (1) (0) (1) (0) (1) (0)

, , ,

(0) (0) (1) (0) (1) (0) (1) (0)

, , ,

,

,

JI JIMs Ms JIMs Ms JIKMs Ms K JIKMs Ms K JIKm m K

m m m

JI JIMs Ms JIMs Ms JIKMs Ms K JIKMs Ms K JIKm m K

T C B C B N k

T B A B A N k

 

 

    

    
 (44) 

 

(0) (0) (1) (0) (1) (0) (1) (0)

, , ,

(0) (0) (1) (0) (1) (0) (1) (0)

, , ,

,

,

Ji JiMs Ms JiMs Ms JiKMs Ms K JiKMs Ms K JiKm m K

m m m m m m

JI JIMs Ms JIMs Ms JIKMs Ms K JIKMs Ms K JIKm m K

D K D K Ф k

K D K D Ф k

  

  

    

    
 

где обозначены осредненные жесткости пластины 

 (0) (1)

JIMs JIMs JIMsC С R     , (0) (1)

JIMs JIMs JIMsB B Z     , 

 (1) (1)

JIKMs JIKMsC С   , (1) (1)

JIKMs JIKMsB B   , (1) (1)

JIKm JIKmN N   , (45) 

 (0)

JIMs JIMsB B  , (0)

JIMs JIMsA A  , 
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 (1) (1)

JIKMs JIKMsB B   , (1) (1)

JIKMs JIKMsA A   , (1) (1)m

JIKm JIKmN N   , 

 (0)

JiMs JiMsD С    , (0)

JiMs JiMsK B    , 

 (1) 2 (1)

JiKMs JIKMsD С    , (1) 2 (1)

JiKMs JIKMsK B    , (1) 2 (1)

JiKm JIKmФ N    , 

 (0)m

JiMs JIMsK B    , (0)m

JiMs JIMsD A    , 

 (1) 2 (1)m

JIKMs JIKMsK B    , (1) 2 (1)m

JIKMs JIKMsD A    , (1) 2 (1)m

JIKm JIKmФ N    ,  

В осредненную систему уравнений (42) входят также моменты 

сдвиговых напряжений 
3J , подставляя в формулу (41) для этих мо-

ментов выражения (12) и (34)  для (0)

3J  и (1)

3J , получаем 

 
(0) (0)

3 , ,

ˆ ˆ f

J IJKs Ks I IJKs Ks I JD B      , (46) 

где введены обозначения для осредненных сдвиговых жесткостей 

 
2 (0) 2 (0)

2

ˆ ˆ
{ } ,   { } ,

{ } .

IJKs IJKs IJKs IJKs

f

J J

D С B B

f

 



   

   

     

  
, , (47) 

Поскольку в систему (42) входит именно разность моментов сдви-

говых напряжений 
3 3( )K K K     , образуем с помощью (44) и (46) 

одно определяющее соотношение для этой разности 

 

(0) (0) (1) (0)

3 3 3 ,

(1) (0) (1) (0)

3 , 3 ,

ˆ

ˆ
,

K K Ms Ms K Ms Ms K IMs Ms I

f

K IMs Ms I K Is s I K

D K D

K Ф k

  



    

  

 (48) 

где введены обозначения 

 (1) (1)

3 3

ˆ ˆ
K IMs K IMs IKMsD D D  , (1) (1)

3 3

ˆ ˆ
K IMs K IMs IKMsK K B  , (49) 

Также в осредненную систему (42) входят поперечные силы  
IQ , 

*

IQ  и поперечные силы моментных напряжений m

IQ  и *m

IQ . Попереч-

ные силы  
IQ , *

IQ , как и в классической теории (для нее *

I IQ Q ), бу-

дем полагать независимыми неизвестными функциями, а для  перере-

зывающих моментных напряжений m

IQ  и *m

IQ  сформулируем допол-

нительные определяющие соотношения. Подставляя в определения 

(41) поперечных сил  m

IQ , *m

IQ  выражения (12), (19), (31) и (34) для 

моментных напряжений (0)

3JM , (1)

3JM  и (0)

3JM , (1)

3JM , получаем 

 * (0) (0) (1) (0) (1) (0)

3 3 3 , 3 ,

m h

J J Ms Ms J Ms Ms J KMs Ms K J KMs Ms K JQ B A B A Q       , (50) 
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где обозначены 

 (0) (1)

3 3 3J Ms J Ms J MsB B R     , (0) (1)

3 3 3J Ms J Ms J MsA A Z     , 

(1) (1)

3 3J KMs J KMsB B   , (1) (1)

3 3J KMs J KMsA A   , (1) (1)

3 3

m

J Km J KmN N   , 

 
(0)

3 3 3{ }J Ms JI I KsB С    , 
(0)

3 3 3{ }J Ms JI I KsA B    , 

 
(1) (0)

3 { }J KMs KJMsB B    , 
(1) (0)

3 { }J KMs KJMsA A    , (51) 

 
(1) (1){ } ( ) / 2h

J mJ j jQ h m m         . 

В правые части определяющих соотношений (44), (48) и (50) в ка-

честве неизвестных функций входят только тензоры (0)

Ms , (0)

Ms
 и век-

тор (0)

mk , а также их производные. Эти функции зависят только от гло-

бальных координат. Согласно системе (9) эти тензоры выражаются 

только через 2 вектора – вектор перемещений (0)

lu  и вектор поворота 

(0)

mk  в нулевом приближении  с помощью кинематических соотноше-

ний 

 
(0) (0) (0)

,Ms s M iMs iu k   , 
(0)(0)

,Ms s Mk . (52) 

Таким образом, получена система осредненных уравнений (42), 

определяющих соотношений (44), (48) и (50) и кинематических соот-

ношений (52). После подстановки уравнений (52) в (44), (48) и (50), а 

затем в (42) получаем замкнутую систему 10 уравнений относительно 

10 неизвестных: 3-х компонент вектора перемещений (0)

iu , 3-х компо-

нент вектора поворота (0)

ik  и 4-х перерезывающих сил 
IQ , *

IQ .  Внеш-

ние воздействия на пластину: давление p , механические моменты 
e

I , массовые внешние моменты e

iM , массовые внешние моменты мо-

ментов me

I  и внешние поверхностные моменты 
im  в этой системе 

полагаются заданными. 

Напряжения в микрополярной многослойной пластине. Рас-

смотрим формулы (4) для напряжений ij  и моментных напряжений 

ijM , и следуя, ограничимся в асимптотических разложениях для тан-

генциальных напряжений 
IJ , 

IJM  и сдвиговых напряжений  
3J , 

3JM

только первым приближением, для сдвиговых напряжений  
3J ,  

3JM   

—  только вторым приближением, а для поперечных напряжений 
33 , 

33M  — третьим  приближением 
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(0) (1)

Ij Ij Ij    , 
(0) (1)

Ij Ij IjM M M  , 

 (1) 2 (2)

3 3 3I I I     , (1) 2 (2)

3 3 3I I IM M M   , (53) 

 (1) 2 (2) 3 (3)

33 33 33 33        , (1) 2 (2) 3 (3)

33 33 33 33M M M M     , 

здесь учтены формулы (12). Подставляя в эти формулы выражения 

(31), (36), а также другие рекуррентные формулы (23) и (24), находим 

явное выражение для напряжений  
ij  и моментных напряжений 

ijM , 

в частности 

 (0) (0) (0) (0) (1) (0) (1) (0) (1) (0)

, , ,
ˆ ˆ ( )Ij IjKl Kl IjKl Kl IjKMs Ms K IjKMs Ms K IjKm m KС B С B N k        , 

(0) (0) (0) (0) (1) (0) (1) (0) (1) (0)

, , ,

ˆ ˆ ( )Ij IjKl Kl IjKl Kl IjKMs Ms K IjKMs Ms K IjKm m KM B A B A N k       , 

 

(0) (0) (0) (0)

3 , ,

2 (1) (0) (1) (0) (1) (0)

, , ,

ˆ ˆ({ } { } { } )

({ } { } { } ),

J IJKl Kl I IJKl Kl I J

IJKMs Ms KI IJKMs Ms KI JjKm m KI

С B f

С B N k

  

  

   

 

    

  
 (54) 

(1) (1) (0) (0) (0) (0)

3 , ,

(0) (0) (0) (0)

2 (2) (2) (1) (0) (1) (0)

, ,

( ( 0.5) { } { }

{ } { } { } )

( ( 0.5) { } { }

{

J J J IJKl Kl I IJKl Kl I

JIj IjKl Kl JIj IjKl Kl mJ

J J IJKMs Ms KI IJKMs Ms KI

IJK

M m m B A

С B h

m m B A

N

 

  

 

  

   

  





       

   

      

 (1) (0) (0) (0)

, , , 3} {{ } } ),m m KI JKMs Ms K JKMs Ms K J i ik Q S f      

 

где обозначены 

 

(0) (0) (1) (0) (0) (1)

(0) (0) (1) (0) (0) (1)

ˆ ˆ,   ,

ˆ ˆ,   .

IjKl IjKl IjKl IjKl IjKl IjKl

IjKl IjKl IjKl IjKl IjKl IjKl

С С R B B R

B B R A A Z

 

 

   

   
 (55) 

Непосредственной проверкой асимптотических формул (54) 

можно показать, что, когда имеет место случай симметричной теории 

упругости 

 0mk  , 0mih  , 0ijklB  , 0ijklA  , 
ijkl ijlkC C , 

ijkl jiklC C , 

то моментные напряжения являются нулевыми, а тензор напряжений 

является симметричным для каждого приближения 

 
( ) 0n

ijM  , 
( ) ( )n n

ij ji  . 

Задача об изгибе центрально-симметричной многослойной 

пластины. В качестве примера рассмотрим частный случай — задачу 

об изгибе тонкой прямоугольной пластины под действием равномер-
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ного давления p
 и поверхностного момента (1)

2m 
. Слои пластины бу-

дем полагать изотропными, c наличием центральной-симметрии [28]  

микрополярных упругих свойств, так что все компоненты тензора 

0ijklB   и только следующие компоненты тензоров 
ijklC  и 

ijklА  явля-

ются ненулевыми [2] 

 

1111 2222 3333 1122 1133 2233

1212 1313 2323 1221 1331 2332

1111 2222 3333 1122 1133 2233

1212 1313 2323 1221 1331 2332

,   ,

,   ,

,   ,

,   ,

C C C C C C

C C C C C C

A A A A A A

A A A A A A

  

   

  

   

      

       

      

       

 (56) 

где  ,  ,  ,  ,  ,   — независимые константы модели микропо-

лярной изотропной среды (различные для каждого слоя, т.е. зависящие 

от  ). 

Будем также полагать, что слои пластины расположены симмет-

рично относительно 0  , так что члены вида 0 F  равны нулю, 

где F  — компоненты произвольного тензора, симметричного относи-

тельно плоскости 0  , в частности 

 
(1) (1) (0)

3 0JjKm JjKm IjKp m pN N С      , 
(1) 0IjKmN  . (57) 

Положим также, что все нулевыми являются все функции ( ) 0n

im    

за исключением (1)

2m 
, а также, что внешних массовых сил и моментов 

нет: 0if  , 0mih  . Тогда согласно (43) имеем: 0e

iF  , 0e

I  , 0e

iM  , 

0me

I  . 

С учетом сделанных ограничений будем искать решение системы 

осредненных уравнений (44), (48), (50) и (52) в следующем виде: 

 (0) (0) (0) *

1 3 2 1 1, , , / /,u u k Q Q x , (58) 

где
1x x , а остальные компоненты  векторов (0)

lu , (0)

mk  и 
2Q , *

2Q  по-

лагаем равными нулю.  

С учетом всех перечисленных допущений, после подстановки (58) 

в кинематические соотношения (52), получаем 

 

(0) (0) (0) (0) (0) (0)

0

(0) (0) (0)

11 1,1 13 3,1 2 22 23 12 21

(0)

,

( ) (0

1 2

)

2 1

,   ,   0,

,   оста .льные  0Ms

u u k

k

           

 
 (59) 

Подставляя (58) в (44), (48) и (50), получаем следующие ненуле-

вые соотношения 
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(0) (1) (0) (1) (0)

11 1111 11 11111 11,1 11113 13,1T C C C     , 
(0) (1) (0) (1) (0)

22 2211 11 22111 11,1 22113 13,1T C C C     , 

 
(0) (1) (0)

12 1212 12 12112 12,1

mT A A  , 
(0) (1) (0)

21 2112 12 21112 12,1

mT A A  , 

 
(0) (1) (0) (1) (0)

11 1111 11 11111 11,1 11113 13,1D D D      , 

 
(0) (1) (0) (1) (0)

22 2211 11 22111 11,1 22113 13,1D D D      , (60) 

 
(0) (1) (0)

12 1212 12 12112 12,1

m m mD D   , 
(0) (1) (0)

21 2112 12 21112 12,1

m m mD D   , 

 
(0) (1) (0)

1 1313 13 13111 11,1

ˆ
D D     , 

 
(1) (0)

2 23112 12,1

mQ A  , 
* (1) (0)

2 23112 12,1

mQ A  . 

Остальные функции 
JIT , m

IJT , 
Ji , m

JI , 
1

mQ , *

2

mQ  в данной задаче 

равны нулю. 
В данной задаче 

{11} 1

11 3131X C , {11} 1

3113 11 3113 3113 3131G X C C C  , 
1

3113 3113 3131G C C 

    , 

 {11} {11} 1

131 1331 11 1331 3131Z С X С C  , {11} {11} 1

113 1133 33 1133 3333Z С X С C  , 

 
(1) (0) {11} (0)

11113 1111 3113 113 1313{ }С С G Z С     , 

 
(1) (0) {11} (0)

13111 1313 3311 131 1111{ }С С G Z С     , 

 (1) (1)

11113 11113 0C С   , 
(1) (0)

22113 2211 3113С С G    , (1) (1)

22113 22113 0C С   , 

 
(1) 2 (0)

11113 1111 3113D С G       , 
(1) 2 (0)

22113 2211 3113D С G       , 

 
(1) (0) {11} (0)

13113 1313 3113 133 1313{ }С С G Z С     , (61) 

 {11} 1

13 3133 0X C  , {11}

3111 13 3311 0G X C  , 

 
(1) (0)

11111 1111 3111 0С С G     , (1) 2 (1)

11111 11111 0D С    , 

 (0) 0JIMs JIMsD С    , (0) 0m

JiMs JIMsD A    , 

 (0)

1313 1313 1331 3113С С С G  , (0)

1313 1313C С  , 
(1) (0)

13111 1111{ }C С    , 

 
(1) (0)

12112 1212 3212A A V    , (1) (1)

12112 12112 0A A   , 

 
(1) (0)

23212 2323 3312A A V    , 
(1) (0)

23112 1212{ }A A    , (1) (1)

23112 23112 0A A   . 

Здесь (1)

113 0IJC   и (1)

12 0IJKA   в силу симметрии пластины относи-

тельно 0  .  
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Из (60) с учетом (61) получаем 

 (0)

11 1111 11T C  , (0)

22 2211 11T C  , 

 (0)

12 1212 12

mT A , (0)

21 2112 12

mT A , 

 
(1) (0)

11 11113 13,1D   , 
(1) (0)

22 22113 13,1D   , (62) 

 
(1) (0)

12 12112 12,1

m mD   , 
(1) (0)

21 21112 12,1

m mD   , 

 
(1) (0)

1 13111 11,1

ˆ
D    , 

2 0mQ  , 
* (1) (0)

2 23112 12,1

mQ A  . 

 Подставляя функции (62) в систему (42), находим тождественно 

ненулевые уравнения этой системы 

 
11,1 0T  , 

1,1Q p  , 
*

11,1 1Q  , 

 
*

12,1 1 1 2

mT Q Q m    , (63) 

 
*

12,1 2 1 2

m m mQ m      . 

Остальные уравнения системы (42) удовлетворяются тожде-

ственно, т.к. все члены, входящие в эти уравнения обращаются в ноль. 

Подставляя в систему (63) независимые уравнения из (59) и (62) 

 (0)

11 1111 11T C  , 
(1) (0)

11 11113 13,1D   , 
(1) (0)

1 13111 11,1

ˆ
D    , 

 (0)

12 1212 12

mT A , 
(1) (0)

12 12112 12,1

m mD   , 
* (1) (0)

2 23112 12,1

mQ A  , (64) 

 
(0) (0)

11 1,1u  , 
(0) (0) (0)

13 3,1 2 ,u k   (0)

12

(0)

2,1k , 

получим систему 5-и уравнений относительно 5-х неизвестных функ-

ций (58). 

Найдем решение этой системы.  

Из первых двух уравнений системы (63) находим 

 0

11 11T T , 0

1 1

0

x

Q Q pdx   , (0) 0

11 11 1111/T C  , (65) 

где 
0

11T , 0

1Q  — константы интегрирования. Тогда из оставшихся урав-

нений системы (63) получаем 

 
(1) (0) (1) (0)

12112 12,11 23112 12,1 2

m mD A m   , 

 
(1) (0) (0)

11113 13,11 2 1 1212 12,1D m Q A     , (66) 

 
* (0)

1 1 2 1212 12,1Q Q m A   , 
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3 уравнения для определения 3-х функций )

12

(0 , (0)

13  и  *

1Q , здесь 

учтено, что в силу (65) 
1 0  . 

Решая систему (66) относительно (0)

12
 и (0)

13
, получаем решение 

в явной форме, например, для случая 
2

mm const  , 
2m const  , 

p const  : 

 

0

0

(0) (1) (1) (1)

12 0 1 2 0 23112 12112 1 23112

23
(0) 0

13 2 1212 1 2 1 0 1212 0(1)

11

1

0

113

2

/ 1/ ,

1
( )

6 2

,

,   ,   
A x m m

A xm

С e A m x A A D A A

xpx
m A A m Q С A A e

D

C x C



     

 
         

 

 

 (67) 

где 
0С , 

1С , 
2C , 

0
 — константы интегрирования. 

Из последних 3-х уравнений в (64) находим (0) (0) (0)

1 3 2,  ,  u u k  

 

0

(0) 0

1 11 1111 0

2
(0) 0
2 1 2

0

0 34
(0) 2 1 1212
3 1 2(1) (1) (1)

11113 11113 11113

2

01 2 1212
4(1) (1) (1)

11113 11113 1

0 3

3

11 13

0

/ ,

2

(1 )
24 6

1
2

,
A x m

m

u xT C u

С x
k e A m

A

m Q A xpx
u A m

D D D

СС x С A
C x C

D D

x C

D

 

   

  
       

 

     
          
     



0

0

,
A x

e
A

 (68) 

где 
3С , 

4С  — константы интегрирования.  

Для нахождения 9 констант интегрирования 
0u , 

0
, 0

11T , 0

1Q , 
0С

,…, 
4С  присоединим к системе (63), (64) следующие граничные усло-

вия: 

 

(0) (0) (0)

3 1 11 2 12

(0) (0)

3 11 11 11

(

2

0)

,

00 :  0, 0,  0,  0,  

1:  0,  0,  0,  0,  0

,x u u k

x u T k



 

    

  



  
 (69) 

Вычислим теперь напряжения в слоях. Для этого подставим реше-

ние (58), (59) в соотношения (54), тогда получим 

 
(0) (0) (1) (0)

11 1111 11 11113 13,1С С     , 

 
(0) (0) (1) (0)

22 2211 11 22113 13,1С С     , 

 
(0) (0) (1) (0) (1) (0) 2 (2) (0)

13 1313 13 13113 13,1 13111 11,1 131113 13,11С С С C           , (70) 

 
(0) (0) 2 (1) (0)

31 1111 11,1 11113 13,11{ } { }С С        , 

 
3 (2) (0)

33 131113 13,111(( ( 0.5)) { } )p p C          , 
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где 

 

(2) (0)

131113 1313 3311 3113

(0) {11} (0) {11} (1)

1313 33 1313 131 11113{ } { } .

C C G G

C X C Z С

 

  

      

   
 (71) 

6. Пример численных расчетов. Для численных расчетов рас-

смотрим частный случай, когда 
2 0m   и 

2 0mm  .  В этом случае  из 

выражений (68) c условиями (69) следует, что компонента вектора по-

ворота (0)

2k  и перемещение (0)

1u  равны нулю во всей пластине: 

 (0)

2 0k  , (0)

1 0u  ,  (0) 4 3

3 (1)

11113

2
24

p
u x x x

D


    , (0)

11 0  . (72) 

Моментные напряжения в данном случае отсутствуют 0ijM  , но 

напряжения 
ij  остаются несимметричными из-за несимметрии ком-

понент тензора модулей упругости: ijklC  по 1 и 2, а также по 3 и 4 ин-

дексам. Для изотропных сред в данной задаче эта несимметрия сво-

дится к существованию 3-х различных модулей сдвига 
1313C , 

1331 3113C C  и 
3131C . Сделаем еще одно допущение 

 
1331 3113 1313 3131C C C C  . (73) 

Тогда имеется только 2 независимых модуля сдвига 
1313C  и 

3131C , 

а из выражений (60) следует, что 

 (0) 1 2

1313 1313 1331 3113 1313 3131 3113 0С С С G С C G     , (1)

13113 0С  , 

 

(2) {11} (1) 1 (0) 1

131113 131 11113 1331 3131 1111 3113 3131

(1) (0) 1 (1) (0) 1

11113 1111 3113 3131 22113 2211 3113 3131

{ } { } ,

,   ,

C Z С С C С C C

С С C C С С C C

  

 

 

 

   

     
 (74) 

 
(1) 2 (0) 1

11113 1111 3113 3131D С C C        . 

Выражения (70) с учетом (72) - (74) принимают следующий вид 

 
(1) (0)

11 11113 13,1С    , 
(1) (0)

22 22113 13,1С    , 

 

2 (2) (0) 2 (1) (0)

13 131113 13,11 31 11113 ξ 13,11

3 (2) (0)

33 - 131113 ξ 13,111

σ =α C γ ,  σ =α {С } γ ,

σ =-α ((p +Δp(ξ+0.5))+{C } γ ),
 (75) 

(0)

13,1 (1)

11113

( 1)
2

p
x x

D



   , (0)

13,11 (1)

11113

(2 1)
2

p
x

D



   , (0)

13,111 (1)

11113

p

D



  . 

Численные расчеты проводились для прогиба и тензора напряже-

ний в случае однослойной пластины из ортотропного материала в виде 
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модельного стеклопластика при следующих значениях компонент тен-

зора модулей упругости: 

 
1111 2222 3333 1122

1133 2233 1313 3131

30 ,  3 ,  3 ,

4 ,  8 ,  6 .

C C ГПа C ГПа C ГПа

C C ГПа C ГПа C ГПа

   

   
 (76) 

Различие в последних двух константах появляется из-за влияния 

моментной теории. Параметр   был принят равным 0,04.  Зададим 

давление на внешнюю поверхность пластины 510  p Па  , а внутрен-

нюю поверхность оставим свободной ( 0p  ), тогда 

3
1.5 2 Г6

p
p Па




   . 

С учетом того, что пластина однослойная, формула для прогиба в 

(72) упрощается: 

  (0) 4 33131
3 (0)

1111 3113

2
2

pС
u x x x

С С


    . (77) 

Формула (77) отличается от формулы для прогиба в классической 

теории наличием члена 3131

3113

С

C
. Это отличие моментной теории от клас-

сической появляется вследствие несимметричности тензора модулей 

упругости в моментной теории. Для классической, симметричной тео-

рии упругости этот член равен единице. Графики зависимости прогиба 
(0)

3u  от продольной координаты x в моментной и классической теориях 

показаны на рис. 1. Графики имеют одну и ту же форму, но значения 

прогиба в моментной теории меньше по модулю, чем в классической 

теории, на всей области определения. 

  

Рис 1. Графики зависимости прогиба 
 0

3
u  от продольной координаты х  

(1 — классическая теория, 2 — моментная теория) 

2

x
 0

3
,  мu

0

0,002

0,004

0,006

0,008

0,010











0,0    0,2     0,4      0,6      0,8      1,0

1
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а 

 
б 

Рис. 2.  Графики зависимости изгибного напряжения 
11

  от   при различных 

значениях х  (1 — 0x  , 2 — 0,125x  , 3 — 0,25x  , 4 — 0,375x  , 

5 — 0,5x  , 6 — 0,625x  , 7 — 0,75x  , 8 — 0,875x  , 8 — 1x  ) 
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Формулы (73) для изгибных и поперечных напряжений для одно-

слойной пластины имеют следующий вид: 

 
2

11 2
6 ( )

p
x x 




   и 

(0)
22211

22 2 (0)

1111

6 ( )
Сp

x x
С

 



  . (78) 

Графики этих напряжений в зависимости от толщинной коорди-

наты   при различных значениях продольной координаты x  показаны 

на рис. 2 и рис. 3 соответственно.  

Изгибные напряжения имеют линейную зависимость от толщин-

ной координаты, равны нулю на срединной поверхности пластины и 

достигают свои минимальные и максимальные значения на внутрен-

ней и внешней поверхностях соответственно. Эти результаты совпа-

дают с результатами для классической теории, так как отсутствует ка-

кая-либо зависимость от констант моментной теории. 

Напряжения межслойного сдвига 
31  и 

13  согласно формулам 

(74) для однослойной пластины принимают следующий вид: 

 2

31

1 1
6

2 4

p
x 



   
    

  
, 

21331
13

3131

1 1
6

2 4

Сp
x

C
 



   
    

  
. (79) 

Графики зависимости напряжения 
31  от толщинной координаты 

  при различных значениях продольной координаты показаны на рис. 

4. Это напряжение имеет квадратичную зависимость от локальной ко-

ординаты и линейную от глобальной координаты, равно нулю на внут-

ренней и внешней поверхностях пластины и достигает экстремума на 

срединной поверхности пластины. Как и в случае изгибных напряже-

ний, эти напряжения совпадают с классической теорией. 

 
а 
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б 

Рис. 3.  Графики зависимости изгибного напряжения 
22

  от   при различных 

значениях х  (1 — 0x  , 2 — 0,125x  , 3 — 0,25x  , 4 — 0,375x  , 

5 — 0,5x  , 6 — 0,625x  , 7 — 0,75x  , 8 — 0,875x  , 9 — 1x  ) 

 

Для напряжения 
13  подобно прогибу (0)

3u   наблюдается отличие 

моментной теории от классической теории, которое обусловлено 

несимметрией  модулей упругости, поскольку 
3131 1331C C . Для клас-

сической теории симметричной упругости 
3131 1331C C  и из (78) сле-

дует, что напряжения межслойного сдвига совпадают: 
31 13    

Графики зависимости напряжения межслойного сдвига 
13  от 

толщинной координаты   при различных значениях продольной изоб-

ражены на рис. 5, а различия для данной компоненты тензора напря-
жений с классической теорией наглядно показаны на рис. 6 (в виде 
сравнения графиков этой компоненты в классической и моментной 
теориях при одном и том же значении продольной координаты 

0,125x  ). Эти графики в целом повторяют очертания таковых для 

классической теории и совпадают в точках 0.5    и 0.5  , но экстре-

мум компоненты 
13  в моментной теории больше по модулю, чем в 

классической. 
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а 

 

б 
Рис. 4.  Совместные графики зависимости напряжений межслойного сдвига 

31
  от   при различных значениях х  (1 — 0x  , 2 — 0,125x  , 3 — 0,25x  , 

4 — 0,375x  , 5 — 0,5x  , 6 — 0,625x  , 7 — 0,75x  , 

8 — 0,875x  , 9 — 1x  ) 
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б 
Рис. 5.  Совместные графики зависимости напряжений межслойного сдвига 

13
  от   при различных значениях х  (1 — 0x  , 2 — 0,125x  , 3 — 0,25x  , 

4 — 0,375x  , 5 — 0,5x  , 6 — 0,625x  , 7 — 0,75x  , 
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8 — 0,875x  , 9 — 1x  ) 

 
Рис. 6. Совместные графики зависимости напряжений межслойного сдвига 

13
  от   для классической и моментной теорий при 0,125х   

(1 — классическая теория, 2 — моментная теория)  

 

 
Рис. 7. Совместные графики зависимости напряжений межслойного сдвига 
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33
  от   для классической и моментной теорий при 0,125х   

(1 — классическая теория, 2 — моментная теория) 

Поперечное напряжение 
33  (последняя формула в (70)) не зави-

сит от продольной координаты и имеет кубическую зависимость от 

толщинной координаты  . Оно также отличается от соответствую-

щего напряжения в классической теории, так как в выражение для 
33  

входят разные модули сдвига   
1313C  и 

3131C . Графики напряжения 
33  

для моментной и классической теориях показаны на рис. 7. Графики 

совпадают при 0.5   , 0   и 0.5  , но при этом при ( 0.5;0)    зна-

чения 
33  в моментной теории меньше по модулю, чем в классиче-

ской, а при (0;0.5)   – наоборот. 

Заключение.  

1. Разработана асимптотическая теория микрополярных упругих 

многослойных тонких пластин, построенная из общих уравнений 

трехмерной моментной теории несимметричной упругости путем вве-

дения асимптотических разложений по малому параметру – отноше-

нию толщины пластины к ее характерной длине. 

2. На основе этой теории сформулированы и решены в явном виде 

локальные задачи моментной теории упругости, получены рекуррент-

ные соотношения для всех компонент тензоров напряжений, момент-

ных напряжений, деформаций, перемещений и поворотов.  

Сформулирована замкнутая система осредненных уравнений для 

теории тонких микрополярных упругих пластин. 

Получены явные аналитические выражения для всех 9 компонент 

тензора напряжений и 9 компонент тензора моментных напряжений в 

пластине, включая напряжения межслойного сдвига и поперечное 

напряжение.  

3. Рассмотрена задача об изгибе центрально-симметричной шар-

нирно опертой пластины из изотропных микрополярных материалов 

под действием равномерно распределенного давления и внешних мо-

ментов, получено точное аналитическое решение этой задачи. 

4. Проведено численное моделирование для случая однослойной 

микрополярной пластины при изгибе только внешним давлением. По-

казано, что из-за несимметрии тензора модулей упругости в данной 

задаче существуют 2 модуля межслойного сдвига,  это приводит к 

несимметрии касательных напряжений  
31  и 

13  для моментной тео-

рии. Следует отметить, что такое различие часто наблюдается экспе-

риментально для слоистых анизотропных материалов. 
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Asymptotic theory of thin multilayer micropolar  

elastic plates  

 Yu.I. Dimitrienko, S.V. Boyko 

Bauman Moscow State Technical University, Moscow, 105005, Russia 

 

The problem of development of a theory for calculating the stress-strain state of thin mul-

tilayer elastic plates in the moment (micropolar) theory, is considered. The solution of this 

problem is built using an asymptotic analysis of the general equations for a 3-dimensional 

quasi-static problem of the moment theory of elasticity. The asymptotic analysis is carried 

out with respect to a small parameter representing the ratio of the plate thickness to its 

characteristic length. Recurrent formulations of local problems of the moment theory of 

elasticity are obtained. Explicit analytical solutions are obtained for these problems. The 

derivation of the averaged system of equations for multilayer plates is presented. It is 
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shown that the asymptotic theory makes it possible to obtain an explicit analytical expres-

sion for all 9 components of the stress tensor and the moment stress tensor (in general) in 

the plate. As a special case, the problem of calculating the stress-strain state of a centrally 

symmetrical hingedly fixed plate when bending under the action of a uniformly distributed 

pressure. A complete analytical solution of this problem for all non-zero components of 

the stress tensor and the moment stress tensor is obtained. A numerical analysis of the 

solution of the problem for a single layer plate for the stress tensor is carried out, basing 

on the obtained expressions. A comparative analysis of the obtained results with similar 

calculations for the classical theory of elasticity is carried out, with revealing of similari-

ties and differences for all components of the stress tensor. 
 

Keywords: asymptotic theory, small parameter, multilayer thin plates, micropolar theory, 
bending, stress tensor 
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