Рубрика: "1.1.8. Механика деформируемого твердого тела (физико-математические науки)"



539.36 Микроструктурная модель анизотропной теории течения для упруго-пластических слоистых композитов

Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Черкасова М. С. (МГТУ им.Н.Э.Баумана), Димитриенко А. Ю. (МГУ им. М.В. Ломоносова)


doi: 10.18698/2309-3684-2022-3-4770


Предложена микроструктурная модель слоистых упруго-пластических композитов на основе анизотропной теории течения. Модель представляет собой эффективные определяющие соотношения трансверсально-изотропной теории пластического течения, в которой константы модели определяются не экспериментально, а на основе аппроксимаций диаграмм деформирования композитов, полученных путем прямого численного решения задач на ячейке периодичности для базовых траекторий нагружения, которые возникают в методе асимптотического осреднения. Сформулирована задача идентификации констант этой модели композита, для численного решения этой задачи применяются методы оптимизации функционала ошибки. Представлены результаты численного моделирования предложенным методом для слоистых упруго-пластических композитов, показавшие хорошую точность аппроксимации численных диаграмм деформирования.


Димитриенко Ю.И., Черкасова М.С., Димитриенко А.Ю. Микроструктурная модель анизотропной теории течения для упруго-пластических слоистых композитов. Математическое моделирование и численные методы, 2022, № 3, с. 47–70.



539.26 Анализ эмпирических моделей кривых деформирования упругопластических материалов (обзор). Часть 3

Головина Н. Я. (Тюменский индустриальный университет)


doi: 10.18698/2309-3684-2023-1-331


Статья является третьей частью обзора работ, посвященных исследованиям свойств упругопластических материалов. Первая и вторая часть были посвящены анализу универсальных эмпирических законов деформирования, моделирующих свойства материала на всем диапазоне деформирования, вплоть до разрушения. Был сделан вывод о том, что для создания модели отклика материала на рост напряжений, закон деформирования должен быть, как минимум четырех-параметрическим. Эмпирический закон Рамберга-Осгуда был признан наиболее качественным, по крайней мере для рассмотренного титанового сплава ВТ6. Тем не менее, несмотря на его точность, он не отражает свойств материала в зоне больших пластических деформаций, в том числе в окрестности точки предела прочности. В данной статье представлен анализ многозвенных моделей, описывающих связь между деформацией и напряжением, различными законами в зоне упругих и в зоне пластических деформаций. В обзор вошли: двузвенные модели Надаи (Nadai), Мирамбелл-Реал (Mirambell, Real), Расмуссена (Rasmussen), Абделла (Abdella), сформулированные для материалов, кривая деформирования, которых не имеет участка с положительной кривизной. Также в обзоре рассмотрены трехзвенные модели Куача (Quach); Хертеле (Hertele); Белова-Головиной, которые позволяют моделировать кривые деформирования с участком положительной кривизны. Оценка качества эмпирических законов и соответствие их выборке экспериментальных точек осуществлена методом минимизации суммарного квадратичного отклонения и использованием метода градиентного спуска для определения минимума функции многих переменных. В качестве материала для сравнительного анализа эмпирических моделей выбран титановый сплав ВТ6, для моделей Хертеле и Белова-Головиной — сталь Ст3сп. Показано, что модели, построенные на основе многозвенных сплайнов, боле точно определяют свойства упругопластических материалов, чем модели, построенные на основе универсальных законов.


Головина Н.Я. Анализ эмпирических моделей кривых деформирования упруго-пластических материалов (обзор). Часть 3. Математическое моделирование и численные методы, 2023, No 1, с. 3–31.



539.26 Анализ эмпирических моделей кривых деформирования упругопластических материалов (обзор). Часть 1

Белов П. А. (Институт прикладной механики РАН), Головина Н. Я. (Тюменский индустриальный университет)


doi: 10.18698/2309-3684-2022-1-6396


В статье представлен результат обзора работ, посвященных исследованиям свойств упругопластических материалов. Статья состоит из двух частей. В первой части рассмотрены универсальные одно-, двух- и трехпараметрические законы, описывающие нелинейную зависимость между напряжением и деформацией вплоть до разрушения. В обзор вошли: степенные законы, параболические законы, экспоненциальные законы, гармонический закон. Сравнение рассмотренных эмпирических кривых с выборкой экспериментальных точек осуществляется стандартной процедурой минимизации суммарного квадратичного отклонения и использованием метода градиентного спуска для определения минимума функции многих переменных. Для оценки предсказательной силы моделей на соответствие эксперименту, использована представительная выборка из 158 экспериментальных точек кривой деформирования российского титанового сплава ВТ6. Проведенный анализ показал, что универсальные эмпирические законы деформирования, содержащие менее четырех формальных параметров, не могут обеспечить инженерную точность описания кривой деформирования с заданными на концах кривой напряжением и касательным модулем. Анализ достоинств и недостатков существующих эмпирических законов деформирования, позволил сформулировать определенные требования к их формулировке.


Головина Н.Я., Белов П.А. Анализ эмпирических моделей кривых деформирования упругопластических материалов (обзор). Часть 1. Математическое моделирование и численные методы, 2022, № 1, с. 63–96



539.3 Моделирование динамических и спектральных вязкоупругих характеристик материалов на основе численного обращения преобразования Лапласа

Валишин А. А. (МГТУ им.Н.Э.Баумана), Тиняев М. А. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2022-1-4262


При проектировании изделий из композиционных материалов, предназначенных для эксплуатации в сложных условиях неоднородных деформаций и температур, важно учитывать вязкоупругие, в том числе спектральные и динамические, свойства связующего и наполнителей. В статье рассмотрены динамические характеристики (комплексный модуль, комплексная податливость, их действительные и мнимые части, тангенс угла потерь) и спектральные характеристики релаксации и ползучести и их зависимость друг от друга. Для всех известных типов ядер ползучести и ядер релаксации были найдены упомянутые выше характеристики. Для нахождения спектральных характеристик был использован один из численных метода обращения преобразования Лапласа — метод квадратурных формул с равными коэффициентами. Составлены алгоритмы и компьютерные программы для реализации этого метода. Полученные графики достаточно точные (максимальная погрешность вычислений в среднем не превосходит 5%), несмотря на то что на начальных участках времени погрешность очень заметна.


Валишин А.А., Тиняев М.А. Моделирование динамических и спектральных вязкоупругих характеристик материалов на основе численного обращения преобразования Лапласа. Математическое моделирование и численные методы, 2022, № 1, с. 42–62.



539.3 Асимптотическая теория тонких многослойных микрополярных упругих пластин

Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Бойко С. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2023-2-3366


Рассматривается задача о построении теории расчета напряженно-деформированного состояния тонких многослойных упругих пластин в моментной (микрополярной) теории упругости. Решение данной задачи строится с помощью асимптотического анализа общих уравнений 3-х мерной квазистатической задачи моментной теории упругости. Асимптотический анализ проводится по малому геометрическому параметру, равному отношению толщины пластины к ее характерной длине. Получены рекуррентные формулировки локальных задач моментной теории упругости. Для этих задач получены явные аналитические решения. Представлен вывод осредненной системы уравнений равновесия многослойных пластин. Показано, что асимптотическая теория позволяет получить явное аналитическое выражение для всех 9 (в общем случае) компонент тензоров напряжений и моментных напряжений в пластине. Как частный случай рассмотрена задача о расчете напряженно-деформированного состояния центрально-симметричной шарнирно опертой пластины при изгибе под действием равномерно распределенного давления. Получено полное аналитическое решение этой задачи для всех ненулевых компонент тензоров напряжений и моментных напряжений. Проведен численный анализ решения задачи для тензора напряжений в случае однослойной пластины на основе полученных выражений. Проведен сравнительный анализ полученных результатов с аналогичными расчетами для классической теории, выявлены сходства и различия для всех компонент тензора напряжений.


Димитриенко Ю.И., Бойко С.В. Асимптотическая теория многослойных тонких микрополярных упругих пластин. Математическое моделирование и численные методы, 2023, № 2, с. 33–66.



539.3 Моделирование деформирования слоистых периодических композитов на основе теории пластического течения

Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Губарева Е. А. (МГТУ им.Н.Э.Баумана), Черкасова М. С. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2021-2-1537


Статья посвящена построению модели деформирования слоистых упруго– пластических композитов с периодической структурой. Все слои композита подчиняются теории пластического течения (ассоциативному закону пластичности) с различными поверхностями пластичности. Для решения указанной задачи применяется метод асимптотического осреднения Бахвалова–Победри. Получено аналитическое решение локальных задач пластического течения на ячейке периодичности. Построены эффективные упруго–пластические определяющие соотношения слоистого композита. Приведены примеры численного расчета диаграмм циклического деформирования упруго–пластического композита при различных сочетаниях слоев в композите.


Димитриенко Ю.И., Губарева Е.А., Черкасова М.С. Моделирование деформирования слоистых периодических композитов на основе теории пластического течения. Математическое моделирование и численные методы, 2021, № 2, с. 15–37.



539.36 Конечно-элементное моделирование собственных колебаний оболочечных конструкций

Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Юрин Ю. В. (МГТУ им.Н.Э.Баумана), Богданов И. О. (МГТУ им.Н.Э.Баумана), Маремшаова А. А. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2023-3-317


Предложен численный алгоритм решения задачи на собственные колебания для тонкостенных оболочечных конструкций, на основе метода конечных элементов. Разработан программный модуль в составе программного комплекса SMCM, который реализует предложенный численный алгоритм. Было проведено решение тестовой задачи для собственных колебаний цилиндрического оболочечного элемента конструкции. Проведен сравнительный анализ собственных частот и собственных форм с аналогичными результатами, полученными с помощью двумерного оболочечного решения в ПК ANSYS, а также с результатами решения трехмерной задачи на собственные колебания в ПК ANSYS.


Димитриенко Ю.И., Юрин Ю.В., Богданов И.О., Маремшаова А.А. Конечно-элементное моделирование собственных колебаний оболочечных конструкций. Математическое моделирование и численные методы, 2023, № 3, с. 3–17.



539.36 Микроструктурная модель деформационной теории пластичности квази-изотропных композиционных материалов

Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Сборщиков С. В. (МГТУ им.Н.Э.Баумана), Димитриенко А. Ю. (МГУ им. М.В. Ломоносова), Юрин Ю. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2021-4-1744


Предложена модель определяющих соотношений упруго-пластических композитов, обладающих кубической симметрией свойств. К этому классу относится значительно число композиционных материалов: дисперсно-армированные композиты, у которых имеется упорядоченная, а не хаотическая система армирования, а также некоторые типы пространственно-армированных композитов. Для построения модели нелинейных определяющих соотношений использован тензорно-симметрийный подход, основанный на спектральных разложениях тензоров напряжений и деформаций, а также спектральном представлении нелинейных тензорных соотношений между этими тензорами. Рассмотрена деформационная теория пластичности, для которой использован тензорно-симметрийный подход, а также предложены конкретные модели для функций пластичности, зависящих от спектральных инвариантов тензора деформации. Для определения констант модели предложен метод, в котором эти константы вычисляются на основе аппроксимации кривых деформирования, полученных прямым численным решением трехмерных задач на ячейке периодичности упруго-пластических композитов. Эти задачи возникают в методе асимптотического осреднения периодических сред. Для решения задач на ячейке периодичности использован конечно-элементный метод и специальное программное обеспечение, реализующее решения задач на ячейках периодичности, разработанное в Научно-образовательном центре «Суперкомпьютерное инженерное моделирование и разработка программных комплексов» МГТУ им. Н.Э. Баумана. Рассмотрен пример расчета констант модели композита с помощью предложенного метода для дисперсно-армированного композита на основе металлической матрицы. А также проведена верификация предложенной модели для различных путей многоосного нагружения композита при прямом численном моделировании. Показано, что предложенная микроструктурная модель и алгоритм определения ее констант обеспечивают достаточно высокую точность прогнозирования упруго-пластического деформирования композита.


Димитриенко Ю.И., Сборщиков С.В., Димитриенко А.Ю., Юрин Ю.В. Микроструктурная модель деформационной теории пластичности квази-изотропных композиционных материалов. Математическое моделирование и численные методы, 2021, № 4, с. 17–44.



539.36 Асимптотическая теория многослойных тонких упругих пластин с проскальзыванием слоев

Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Губарева Е. А. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2022-2-2862


Рассматривается задача о построении теории расчета напряженно-деформированного состояния тонких многослойных упругих пластин, у которых на границе раздела слоев заданы линеаризованные условия проскальзывания. Решение данной задачи строится с помощью асимптотического анализа общих уравнений трехмерной теории упругости с условиями неидеального контакта слоев. Асимптотический анализ проводится по малому геометрическому параметру, представляющему отношение толщины пластины к ее характерной длине. Получены рекуррентные формулировки локальных квазиодномерных задач теории упругости с проскальзыванием. Для этих задач получены явные аналитические решения. Представлен вывод осредненных уравнений упругого равновесия многослойных пластин с учетом проскальзыванием слоев. Показано, что за счет эффекта проскальзывания слоев система осредненных уравнений теории многослойных пластин имеет повышенный — пятый порядок производных, в отличие от классического четвертого порядка, который имеет место в теории пластин Кирхгофа–Лява. Показано, что асимптотическая теория позволяет получить явное аналитическое выражение для всех шести компонент тензора напряжений в слоях пластины. Как частный случай рассмотрена задача о расчете напряженно-деформированного состояния четырехслойной пластины при изгибе равномерным давлением, с одним коэффициентом скольжения. Получено полное аналитическое решение этой задачи, в том числе — получены явные выражения для всех ненулевых компонент тензора напряжений. Проведен численный анализ решения осредненной задачи для композитной пластины, у которой слои представляют собой однонаправленно-армированные волокнистые материалы, ориентированные под разными углами. Проведен сравнительный анализ влияния углов армирования волокон и коэффициента скольжения слоев на перемещения пластины и распределение напряжений в слоях. Показано, что задача об изгибе пластины с проскальзыванием допускает существование спектра критических значений коэффициента скольжения, при переходе через которые перемещения и напряжения в слоях пластины существенным образом меняются, причем эти критические значения зависят от угла армирования слоев композита.


Димитриенко Ю.И., Губарева Е.А. Асимптотическая теория многослойных тонких упругих пластин с проскальзыванием слоев. Математическое моделирование и численные методы, 2022, № 2, с. 30–64



1>>