doi: 10.18698/2309-3684-2022-1-6396
The article presents the result the review of works devoted to the research the properties of elastoplastic materials. The article consists of two parts. In the first part, universal single, two- and three-parametric laws describing the nonlinear dependence between the stress and deformation up to the destruction. The review includes: power laws, parabolic laws, exponential laws, harmonic law. A comparison the considered empirical curves with a sample experimental points is carried out by the standard procedure for minimizing the total quadratic deviation and using the method the gradient descent to determine the minimum function of many variables. To assess the predictive force for models on the compliance with the experiment, a representative sample used from 158 experimental points in the deformation curve of the Russian titanium alloy WT6. The analysis showed that the empirical laws of deformation containing less than four formal parameters cannot describe the universal deformation curve with the stress specified at the ends and the tangent module. Analysis of the advantages and disadvantages of existing empirical laws of deformation, made it possible to formulate certain requirements for their wording.
Bell J.F. Mechanics of Solids: Volume I: The Experimental Foundations of SolidMechanics. Springer, 1984, 813 p.
Bernoulli J. Curvatura laminae elasticae. Acta Eruditorum Lipsiae, 1694, pp. 262–276.
Hartig E.K. Der Elasticitatsmodul des gerades Stabes als Funktion der spezifischen Beanspruchung. Civilingenieur, 1893, no. 39, pp. 113–138.
Hodgkinson E. Experiments to prove that all bodies are in some degree inelastic, and a proposed law for estimating the deficiency. Report of the 13th Meeting of the British Association for the Advancement of Science, 1843, pp. 23–25.
Cox H. The deflection of imperfectly elastic beams and the hyperbolic law of elasticity. Transactions of the Cambridge Philosophical Society, 1856, no. 9, pp. 177–190.
Thompson J.O. Ueber das Gesetz der elastischen Dehnung. Annalen der Physik und Chemie. Neue Folge, 1891, no. 44, pp. 555–576.
Riссati G. Delle vibrazione sonore dei cilindri. Memorie Mathematica e Fisica Societa Italiana, 1782, no 1, pp. 444–525.
Imbert A. Recherches théoriques et expérimentales sur l’élasticité du caoutchouc. Goyard, Lyon, 1880, 105 p.
Ludwik P. Elemente der Technologischen Mechanik. Berlin, Springer, 1909, 58 р.
Hollomon J.H. Tensile deformation. AIME. Technical Publication, 1945, no. 162, pp. 268–290.
Swift H.W. Plastic instability under plane stress. Journal of the Mechanics and Physics of Solids, 1952, no. 1(1), pp. 1–18.
Frenkel Ya.I. Sobranie izbrannyh trudov [Collection of selected works]. Moscow, Leningrad, The Academy of Sciences of the USSR Publ., 1956–1959, 3 vols.
Ramberg W., Osgood W.R. Description of stress–strain curves by three parameters. Washington DC, NASA, 1943, 29 p.
Voce E. The relationship between stress and strain for homogeneous deformation. Journal of the Institute of Metals, 1948, vol. 74, pp. 537–562.
Ludwigson D.C. Modified stress–strain relation for FCC metals and alloys. Metallurgical and material handling B, 1971, no. 2(10), pp. 2825–2828.
Nadai A. Theory of flow and fracture of solids. Vol.1. New York, McGraw-Hill, 1950, 572 p.
Timoshenko S.P., Gere J. Mekhanika materialov [Mechanics of materials]. St. Petersburg, Lan Publ., 2002, 672 p.
Mendelson A. Plasticity: Theory, and Application. New York, London, Macmillan, 1968, 353 p.
Ilyushin A.A. Mekhanika sploshnoj sredy [Continuum mechanics]. Moscow, MSU Publ., 1990, 310 p.
Dimitrienko Yu.I. Osnovy mekhaniki tverdogo tela. T.4. Mekhanika sploshnoj sredy [Fundamentals of solid mechanics. Vol.4. Continuum mechanics]. Moscow, BMSTU Publ., 2013, 624 p.
Dimitrienko Yu.I. Nonlinear Continuum Mechanics and Large Inelastic Deformations. Springer, 2010, 722 p.
Hertelé S., De Waele W., Denys R., Verstraete M. Full-range stressestrain behaviour of contemporary pipeline steels: Part II. Estimation of model parameters. International Journal of Pressure Vessels and Piping, 2012, no. 92, pр. 27–33.
Real E., Arrayago I., Mirambell E., Westeel R. Comparative study of analytical expressions forthe modelling of stainless steel behavior. Thin-Walled Structures, 2014, vol. 83, pp. 2–11.
Quach W.M., Huang J.F. Two-stage stress-strain models for light-gauge steels. Advances in Structural Engineering, 2014, vol. 17, no. 7, pp. 937–949.
Abdella K. Inversion of a full-range stress–strain relation for stainless steel alloys. International Journal of Non-Linear Mechanics, 2006, vol. 41, iss. 3, pp. 456–463.
Li T., Zheng J., Yi Chen Z. Description of the behavior of steel in strain hardening in the entire range. Springer Plus, 2016, no. .5, pp.1316–1328.
Rasmussen K. Full range stress-strain curves for stainless steel alloys. Journal ofConstructional Steel Research, 2003, vol. 59, iss. 1, pp. 47–61.
Golovina N.Y. On one empirical model of nonlinear deformation of elastoplasticmaterials. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2020, vol. 17, no. 3, pp. 48–55.
Golovina N.Ya., Belov P.A. Model of a curve of nonlinear deformation of steel20HGR and steel 35. Problems of Strength and Plasticity, 2020, vol. 82, no. 3, pp. 305–316.
Golovina N.Ya., Belov P.A. Deformation curve as a functional extremal. Science and Business: Ways of Developmen, 2019, no. 10 (100), pp. 44–52.
Golovina N.Ya. The nonlinear stress-strain curve model as a solution of the fourth order differential equation. International Journal of Pressure Vessels and Piping,2021, vol. 189, art. no. 104258.
Krivosheeva S.Ya., Golovina N.Ya. Study of axial stiffness effect on the performance of pliable metal pipelines. Scientific review, 2016, no. 16, pp. 213–216.
Golovina N.Ya., Belov P.A., Lurie S.A., Egorova O.V. Resource model for various elastic-plastic material models. Deformatsiya i razrusheniye materialov,2022, no. 2, pp. 2–11.
Belov P.A., Golovina N.Ya. Criticism of the law of deformation ugent for elastoplastic materials and an alternative to it. Mekhanika kompozitsionnykh materialov i konstruktsii, vol. 27, no. 1, pp. 3–16
Головина Н.Я., Белов П.А. Анализ эмпирических моделей кривых деформирования упругопластических материалов (обзор). Часть 1. Математическое моделирование и численные методы, 2022, № 1, с. 63–96
Количество скачиваний: 233