Рубрика: "1.1.8. Механика деформируемого твердого тела (физико-математические науки)"



539.36 Микроструктурная модель деформационной теории пластичности трансверсально-изотропных композитов

Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Сборщиков С. В. (МГТУ им.Н.Э.Баумана), Димитриенко А. Ю. (МГУ им. М.В. Ломоносова), Юрин Ю. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2022-1-1541


В рамках деформационной теории пластичности при активном нагружении предложена модель определяющих соотношений упруго-пластических композитов, относящихся к классу трансверсально-изотропных материалов. Для построения нелинейных определяющих соотношений использована теория спектральных разложениях тензоров напряжений и деформаций, спектральное представление нелинейных тензорных функций для трансверсально-изотропных сред. Предложены конкретные модели функций пластичности, зависящие от спектральных инвариантов тензора деформации. Для определения констант модели предложен метод, в котором эти константы вычисляются на основе аппроксимации кривых деформирования, полученных прямым численным решением трехмерных задач на ячейке периодичности упруго-пластических композитов. Задачи на ячейке периодичности формулируются с помощью метода асимптотического осреднения периодических сред. Численное решение задач на ячейке периодичности осуществляется с помощью конечно-элементного метода в рамках программного обеспечения, разработанного в Научно-образовательном центре «Суперкомпьютерное инженерное моделирование и разработка программных комплексов» МГТУ им. Н.Э. Баумана. приведен пример численного расчета констант модели композита с помощью предложенного метода для однонаправленно-армированного композита на основе углеродных волокон и матрицы из алюминиевого сплава. Приведены примеры верификация предложенной модели для различных траекторий нагружения композита в 6 мерном пространстве напряжений. Показано, что предложенная микроструктурная модель и алгоритм определения ее констант обеспечивают достаточно высокую точность прогнозирования упруго-пластического деформирования трансверсально-изотропных композитов.


Димитриенко Ю.И., Сборщиков С.В., Димитриенко А.Ю., Юрин Ю.В. Микроструктурная модель деформационной теории пластичности трансверсально-изотропных композитов. Математическое моделирование и численные методы, 2022, № 1, с. 15–41.



539.36 Микроструктурная модель деформационной теории пластичности квази-изотропных композиционных материалов

Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Сборщиков С. В. (МГТУ им.Н.Э.Баумана), Димитриенко А. Ю. (МГУ им. М.В. Ломоносова), Юрин Ю. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2021-4-1744


Предложена модель определяющих соотношений упруго-пластических композитов, обладающих кубической симметрией свойств. К этому классу относится значительно число композиционных материалов: дисперсно-армированные композиты, у которых имеется упорядоченная, а не хаотическая система армирования, а также некоторые типы пространственно-армированных композитов. Для построения модели нелинейных определяющих соотношений использован тензорно-симметрийный подход, основанный на спектральных разложениях тензоров напряжений и деформаций, а также спектральном представлении нелинейных тензорных соотношений между этими тензорами. Рассмотрена деформационная теория пластичности, для которой использован тензорно-симметрийный подход, а также предложены конкретные модели для функций пластичности, зависящих от спектральных инвариантов тензора деформации. Для определения констант модели предложен метод, в котором эти константы вычисляются на основе аппроксимации кривых деформирования, полученных прямым численным решением трехмерных задач на ячейке периодичности упруго-пластических композитов. Эти задачи возникают в методе асимптотического осреднения периодических сред. Для решения задач на ячейке периодичности использован конечно-элементный метод и специальное программное обеспечение, реализующее решения задач на ячейках периодичности, разработанное в Научно-образовательном центре «Суперкомпьютерное инженерное моделирование и разработка программных комплексов» МГТУ им. Н.Э. Баумана. Рассмотрен пример расчета констант модели композита с помощью предложенного метода для дисперсно-армированного композита на основе металлической матрицы. А также проведена верификация предложенной модели для различных путей многоосного нагружения композита при прямом численном моделировании. Показано, что предложенная микроструктурная модель и алгоритм определения ее констант обеспечивают достаточно высокую точность прогнозирования упруго-пластического деформирования композита.


Димитриенко Ю.И., Сборщиков С.В., Димитриенко А.Ю., Юрин Ю.В. Микроструктурная модель деформационной теории пластичности квази-изотропных композиционных материалов. Математическое моделирование и численные методы, 2021, № 4, с. 17–44.



539.36 Конечно-элементное моделирование собственных колебаний оболочечных конструкций

Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Юрин Ю. В. (МГТУ им.Н.Э.Баумана), Богданов И. О. (МГТУ им.Н.Э.Баумана), Маремшаова А. А. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2023-3-317


Предложен численный алгоритм решения задачи на собственные колебания для тонкостенных оболочечных конструкций, на основе метода конечных элементов. Разработан программный модуль в составе программного комплекса SMCM, который реализует предложенный численный алгоритм. Было проведено решение тестовой задачи для собственных колебаний цилиндрического оболочечного элемента конструкции. Проведен сравнительный анализ собственных частот и собственных форм с аналогичными результатами, полученными с помощью двумерного оболочечного решения в ПК ANSYS, а также с результатами решения трехмерной задачи на собственные колебания в ПК ANSYS.


Димитриенко Ю.И., Юрин Ю.В., Богданов И.О., Маремшаова А.А. Конечно-элементное моделирование собственных колебаний оболочечных конструкций. Математическое моделирование и численные методы, 2023, № 3, с. 3–17.



539.26 Анализ эмпирических моделей кривых деформирования упругопластических материалов (обзор). Часть 2

Головина Н. Я. (Тюменский индустриальный университет), Белов П. А. (Институт прикладной механики РАН)


doi: 10.18698/2309-3684-2022-2-1427


В статье представлено продолжение обзора работ, посвященных исследованиям свойств упругопластических материалов. В первой части были рассмотрены универсальные законы деформирования, содержащие менее четырех формальных параметров. В результате обзора были сформулированы требования к формулировке эмпирических законов деформирования упругопластических материалов. В том числе, был сделан вывод о том, что закон деформирования должен быть, как минимум четырех-параметрическим. Во второй части данной статьи рассмотрены и проанализированы эмпирические законы деформирования, содержащие четыре и более параметров. Сравнение рассмотренных эмпирических кривых с выборкой экспериментальных точек осуществляется стандартной процедурой минимизации суммарного квадратичного отклонения и использованием метода градиентного спуска для определения минимума функции многих переменных. Для оценки предсказательной силы моделей на соответствие эксперименту, использована представительная выборка из 158 экспериментальных точек кривой деформирования российского титанового сплава ВТ6. Универсальные эмпирические законы деформирования, содержащие четыре формальных параметра, позволяют описать кривую деформирования с заданными на концах кривой напряжением и касательным модулем. Этот факт позволяет утверждать, что упругопластические свойства материалов могут быть выражены через геометрические параметры кривой деформирования. В свою очередь связь между упругопластическими свойствами материала и геометрией кривой деформирования, можно трактовать, как принцип «геометризации» упругопластических свойств материалов.


Головина Н.Я., Белов П.А. Анализ эмпирических моделей кривых деформирования упругопластических материалов (обзор). Часть 2. Математическое моделирование и численные методы, 2022, № 2, с. 16–29



539.26 Анализ эмпирических моделей кривых деформирования упругопластических материалов (обзор). Часть 1

Белов П. А. (Институт прикладной механики РАН), Головина Н. Я. (Тюменский индустриальный университет)


doi: 10.18698/2309-3684-2022-1-6396


В статье представлен результат обзора работ, посвященных исследованиям свойств упругопластических материалов. Статья состоит из двух частей. В первой части рассмотрены универсальные одно-, двух- и трехпараметрические законы, описывающие нелинейную зависимость между напряжением и деформацией вплоть до разрушения. В обзор вошли: степенные законы, параболические законы, экспоненциальные законы, гармонический закон. Сравнение рассмотренных эмпирических кривых с выборкой экспериментальных точек осуществляется стандартной процедурой минимизации суммарного квадратичного отклонения и использованием метода градиентного спуска для определения минимума функции многих переменных. Для оценки предсказательной силы моделей на соответствие эксперименту, использована представительная выборка из 158 экспериментальных точек кривой деформирования российского титанового сплава ВТ6. Проведенный анализ показал, что универсальные эмпирические законы деформирования, содержащие менее четырех формальных параметров, не могут обеспечить инженерную точность описания кривой деформирования с заданными на концах кривой напряжением и касательным модулем. Анализ достоинств и недостатков существующих эмпирических законов деформирования, позволил сформулировать определенные требования к их формулировке.


Головина Н.Я., Белов П.А. Анализ эмпирических моделей кривых деформирования упругопластических материалов (обзор). Часть 1. Математическое моделирование и численные методы, 2022, № 1, с. 63–96



624.04 Новый метод вычисления жесткости на кручение в модели естественно-закрученного стержня

Темис Ю. М. (Центральный институт авиационного моторостроения им. П.И. Баранова), Зиятдинов И. З. (Центральный институт авиационного моторостроения им. П.И. Баранова)


doi: 10.18698/2309-3684-2023-1-6480


На начальных этапах проектирования лопаток компрессоров, винтов, режущих инструментов целесообразно применение конечно-элементной модели, основанной на модели естественно закрученного стержня. Эта модель позволяет учесть влияние угла естественной закрутки на жесткость детали. Жесткость на кручение стержня существенно влияет на параметры жесткости конечно-элементной модели. Показано, что поправка жёсткости на кручение, полученная на основе соотношений технической теории естественно закрученных стержней, позволяет при небольших углах естественной закрутки получать результаты, хорошо согласующиеся с трёхмерным расчётом закрученного стержня МКЭ. При больших удельных углах начальной крутки, техническая теория даёт завышенные значения жесткости на кручение. В статье предложна модификация соотношений технической теории для определения жесткости на кручение с учетом больших углов начальной крутки.


Темис Ю.М., Зиятдинов И.З. Новый метод вычисления жесткости на кручение в модели естественно-закрученного стержня. Математическое моделирование и численные методы, 2023, No 1, с. 64–80



004.9:621.7 Математическое моделирование процесса деформации металла на литейно-ковочном модуле с измененным приводом боковых бойков

Одиноков В. И. (ФГБОУ ВО «КнАГУ»), Дмитриев Э. А. (ФГБОУ ВО «КнАГУ»), Евстигнеев А. И. (ФГБОУ ВО «КнАГУ»), Потянихин Д. А. (ФГБОУ ВО «КнАГУ»), Квашнин А. Е. (ФГБОУ ВО «КнАГУ»)


doi: 10.18698/2309-3684-2021-3-323


В работе представлена математическая постановка и приведены результаты расчетов в задаче о деформировании металла на литейно-ковочном модуле с измененным приводом боковых бойков. Рассматривается сложная пространственная задача по определению напряженно-деформированного состояния области течения при нагружении внешней нагрузкой, изменяющейся с течением времени. Определяющие соотношения задачи основаны на теории течения. При решении задачи используется апробированный численный метод, а также численные схемы и комплекс программ, использованные ранее при решении подобных задач. В комплексе программ реализован шаговый алгоритм нагружения с учетом истории процесса и изменяющейся геометрии области течения. Малый временной шаг ассоциируется с поворотом эксцентричного вала на угол 10°. Область деформации разбивается на элементы ортогональной системой поверхностей (элементы имеют ортогональную форму). Для каждого элемента записывается в разностном виде сформулированная система уравнений, которая решается по разработанным численным схемам и алгоритмам с учетом начальных и граничных условий. Результатом решения являются поля напряжений и скорости перемещений по пространственной области. Приводится анализ полученных результатов. Делается сравнение с результатами решения действующей конструкции. В качестве деформируемого материала взят свинец, физические свойства которого аппроксимированы аналитической зависимостью по имеющимся экспериментальным данным. Физическая нелинейность системы уравнений реализуется при решении итерационным методом. Проведены локальные расчеты решения задачи на трех вариантах разбиения области на элементы. Обоснован выбор плотности сетки, накладываемой на рассматриваемую область деформации. Результаты решения представлены в графическом виде. Показана эффективность процесса деформации по усовершенствованному способу на новой конструкции литейно-ковочного модуля.


Одиноков В.И., Дмитриев Э.А., Евстигнеев А.И., Потянихин Д.А., Квашнин А.Е. Математическое моделирование процесса деформации металла на литейно-ковочном модуле с измененным приводом боковых бойков. Математическое моделирование и численные методы, 2021, № 3, с. 3–23.



539.36 Микроструктурная модель анизотропной теории течения для упруго-пластических слоистых композитов

Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Черкасова М. С. (МГТУ им.Н.Э.Баумана), Димитриенко А. Ю. (МГУ им. М.В. Ломоносова)


doi: 10.18698/2309-3684-2022-3-4770


Предложена микроструктурная модель слоистых упруго-пластических композитов на основе анизотропной теории течения. Модель представляет собой эффективные определяющие соотношения трансверсально-изотропной теории пластического течения, в которой константы модели определяются не экспериментально, а на основе аппроксимаций диаграмм деформирования композитов, полученных путем прямого численного решения задач на ячейке периодичности для базовых траекторий нагружения, которые возникают в методе асимптотического осреднения. Сформулирована задача идентификации констант этой модели композита, для численного решения этой задачи применяются методы оптимизации функционала ошибки. Представлены результаты численного моделирования предложенным методом для слоистых упруго-пластических композитов, показавшие хорошую точность аппроксимации численных диаграмм деформирования.


Димитриенко Ю.И., Черкасова М.С., Димитриенко А.Ю. Микроструктурная модель анизотропной теории течения для упруго-пластических слоистых композитов. Математическое моделирование и численные методы, 2022, № 3, с. 47–70.



539.3 Моделирование изгиба балок из резиноподобных материалов

Фирсанов В. В. (ФГБУ ВО "Московский авиационный институт")


doi: 10.18698/2309-3684-2021-4-316


Поскольку классические гипотезы Бернулли для балок и Кирхгофа для тонких пластин вступают в противоречие с дополнительным для резиноподобных (несжимаемых) материалов условием несжимаемости (неизменяемости объёма в процессе деформирования), предлагается модель расчёта для изгибаемой балки, не приводящая к серьёзному усложнению поставленной задачи по сравнению с классическим решением. Неизменяемость объёма проявляется при действии силовой нагрузки, в случае температурной нагрузки деформация изменения объёма не равна нулю. Отсутствие объёмных деформаций для резиноподобных материалов есть следствие закона Гука для подобного рода материалов. Суммируя линейные деформации, выраженные через напряжения и принимая коэффициент Пуассона 0,5, получим равенство нулю указанной суммы Многие резиноподобные материалы являются несжимаемыми и низкомодульными, что означает слабое их сопротивление растяжению и сдвигу, но сопротивление материала изменению объёма стремится к бесконечности, поэтому физические соотношения обобщённого закона Гука преобразуются в так называемые «неогуковские» уравнения связи напряжений и деформаций. Из двух независимых физических характеристик (модулей) для несжимаемых материалов остаётся лишь один модуль, характеризующий сопротивление среды изменению формы. В физических соотношениях для несжимаемого материала произведение бесконечно большого объёмного модуля на деформацию изменения объема, равную нулю, представляет собой неопределенность, которая заменяется некоторой силовой функцией, имеющей размерность напряжений и являющейся дополнительной неизвестной. В то же время, система определяющих уравнений механики несжимаемых сред дополняется уравнением неизменяемости объёма. Схема решения задачи в перемещениях для традиционных конструкционных материалов превращается в смешанную схему для резиноподобных материалов, поскольку для них в качестве основных искомых неизвестных выступают не только перемещения, но и упомянутая силовая.


Фирсанов В.В. Моделирование изгиба балок из резиноподобных материалов. Математическое моделирование и численные методы, 2021, № 4, с. 3–16.



1>>