Юрий Иванович Димитриенко (МГТУ им.Н.Э.Баумана; ) :


Статьи:

539.3 Асимптотическая теория конструктивно-ортотропных пластин с двухпериодической структурой

Димитриенко Ю.И.(МГТУ им.Н.Э.Баумана), Губарева Е.А.(МГТУ им.Н.Э.Баумана), Сборщиков С.В.(МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-1-3656


Предложена теория тонких конструктивно-ортотропных пластин, обладающих двухпериодической структурой, примером которых являются сотовые многослойные панели и подкрепленные пластины. Теория построена на основе уравнений об-щей трехмерной теории упругости путем с помощью асимптотических разложений по малому параметру, представляющему отношение толщины пластины к характерной длине, без введения каких-либо гипотез относительно характера распределения перемещений и напряжений по толщине. Сформулированы локальные задачи для нахождения напряжений во всех конструктивных элементах пластины. Показано, что полученные глобальные (осредненные по определенным правилам) уравнения теории пластин близки к уравнениям теории пластин Кирхгофа – Лява, но отличаются от них наличием третьего порядка производных от продольных перемещений. Предложенный метод позволяет вычислить все шесть компонент тензора напряжений, включая поперечные нормальные напряжения и напряжения межслойного сдвига, для этого необходимо численно решить локальные задачи до третьего приближения включительно. Приведен пример конечно-элементного решения локальных задач нулевого приближения для сотовой конструкции, который показал, что разработанный метод расчета пластин и его численная реализация достаточно эффективны, они позволяют проводить расчеты для сложных конструктивно-ортотропных пластин с сильно различающимися значениями упругих характеристик.


Димитриенко Ю. И., Губарева Е. А., Сборщиков С. В. Асимптотическая теория конструктивно-ортотропных пластин с двухпериодической структурой. Математическое моделирование и численные методы, 2014, №1 (1), c. 36-56



539.3 Асимптотическая теория термоползучести многослойных тонких пластин

Димитриенко Ю.И.(МГТУ им.Н.Э.Баумана), Губарева Е.А.(МГТУ им.Н.Э.Баумана), Юрин Ю.В.(МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-4-1836


Предложена теория термоползучести многослойных тонких пластин, основанная на анализе общих уравнений трехмерной нелинейной теории термоползучести с помощью построения асимптотических разложений по малому параметру, представляющему отношение толщины пластины к характерной длине, без введения каких-либо гипотез относительно характера распределения перемещений и напряжений по толщине. Сформулированы локальные задачи для нахождения всех шести компонент тензора напряжений во всех слоях пластины, с точным учетом всех граничных условий. Выведены глобальные (осредненные по определенным правилам) уравнения теории термоползучести пластин, показано, что эти уравнения близки по структуре к уравнениям теории пластин Кирхгофа – Лява, но отличаются от них наличием 3-го порядка производных от продольных перемещений. Показано, что предложенная теория позволяет вычислить с наперед заданной точностью все шесть компонент тензора напряжений, включая поперечные нормальные напряжения и напряжения межслойного сдвига, для этого необходимо численно решить только глобальные уравнения теории термоползучести пластин, а остальные вычисления сводятся только к использованию аналитических формул.


Димитриенко Ю. И., Губарева Е. А., Юрин Ю. В. Асимптотическая теория термоползучести многослойных тонких пластин. Математическое моделирование и численные методы, 2014, №4 (4), c. 18-36



539.3 Асимптотическая теория типа Тимошенко для тонких многослойных пластин

Димитриенко Ю.И.(МГТУ им.Н.Э.Баумана), Юрин Ю.В.(МГТУ им.Н.Э.Баумана)


doi:


Предложен новый вариант асимптотической теории тонких многослойных пластин с конечной сдвиговой жесткостью, основанный на асимптотическом анализе общих трехмерных уравнений теории упругости многослойных тел. Этот вариант позволяет получить осредненные уравнения теории пластин типа Тимошенко. Асимптотический анализ проводится по малому геометрическому параметру. Сформулированы локальные задачи теории упругости, которые допускают аналитическое решение. Показано, что при учете только главных членов в асимптотических разложениях асимптотическая теория приводит к осредненным уравнениям пластин типа Кирхгофа — Лява. При учете идущих за главными членов в асимптотических рядах самоподобным образом с предыдущим приближением асимптотическая теория приводит к осредненным уравнениям типа Тимошенко. Теоретическая точность получившегося урезанного асимптотического решения при этом не ниже, чем решения согласно теории типа Кирхгофа — Лява. Разработанный вариант асимптотической теории с помощью явных аналитических формул позволяет с высокой точностью вычислять все шесть компонент тензора напряжений в многослойной пластине. С помощью разработанного метода проведено численное моделирование напряжений и перемещений в многослойной пластине при изгибе равномерным давлением. Численные расчеты показали, что разработанная асимптотическая теория типа Тимошенко дает примерно одинаковую высокую точность расчета изгибных, сдвиговых и поперечных напряжений в сравнении с трехмерным конечно-элементным решением, полученным для очень мелких сеток, и асимптотической теорией типа Кирхгофа — Лява. Для прогиба теория типа Тимошенко дает лучший результат, чем теория типа Кирхгофа — Лява, особенно для относительно коротких пластин. Для продольного перемещения теория типа Тимошенко дает хороший результат только для длинных пластин.


Димитриенко Ю.И., Юрин Ю.В. Асимптотическая теория типа Тимошенко для тонких многослойных пластин. Математическое моделирование и численные методы, 2018, № 1, с. 16-40



539.3 Конечно-элементное моделирование напряженно-деформированного состояния горных пород с учетом ползучести

Димитриенко Ю.И.(МГТУ им.Н.Э.Баумана), Юрин Ю.В.(МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2015-3-101118


Предложена модель для расчета напряженно-деформированного состояния (НДС) осадочных горных пород с учетом их ползучести. Представлен алгоритм конечно-элементного решения трехмерной задачи ползучести, использующий конечно-разностные схемы метода Эйлера по времени. Разработано специализированное программное обеспечение, позволяющее строить компьютерные 3D-модели областей горных пород по исходным сериям 2D-изображений, полученных с помощью данных сейсморазведки, а также проводить конечно-элементный расчет изменения НДС горных пород во времени. Проведено численное моделирование напряженно-деформированного состояния горных пород на примере зоны из Астраханского нефтегазового месторождения. Установлено, что в одних точках происходит поднятие горной породы, в других — ее опускание. Скорость ползучести различных слоев различна — наибольшие значения скорости ползучести реализуются в глинистых слоях и в песчаных, заполненных жидкостью, которые обладают наиболее заметными свойствами ползучести. Разработанный алгоритм и программное обеспечение для численного моделирования показали себя достаточно эффективными и могут быть применены для исследования НДС горных пород.


Димитриенко Ю. И., Юрин Ю. В. Конечно-элементное моделирование напряженно-деформированного состояния горных пород с учетом ползучести. Математическое моделирование и численные методы, 2015, №3 (7), c. 101-118



532.51 Конечно-элементное моделирование неизотермического стационарного течения неньютоновской жидкости в сложных областях

Димитриенко Ю.И.(МГТУ им.Н.Э.Баумана), Ли Ш.-.(МГТУ им. Н.Э.Баумана)


doi:


Метод конечных элементов используется для моделирования неизотермического потока неньютоновских вязких жидкостей в сложных геометриях. Рассмотрена модель Carreau-Yasuda неньютоновской жидкости, в которой зависимость коэффициента вязкости от второго инварианта тензора скоростей деформации имеет степенной вид. Получена вариационная формулировка задачи движения неньютоновской жидкости для плоского случая. Для решения системы уравнений Навье-Стокса применяется итерационный алгоритм Ньютона-Рафсона, а для решения уравнения энергии использован итерационный алгоритм Пикара. Рассмотрена задача о движении полимерной массы в пресс-форме сложного переменного сечения при наличии неравномерного температурного поля. С помощью конечно-элементного моделирования проведен численный анализ влияния различных параметров на движение жидкости и теплопередачу полимерного материала при различных значениях внешнего давления. Показано, что характер движения неньютоновской жидкости существенно зависит от реологических свойств жидкости и характеристик геометрической формы, что необходимо учитывать при технологических процессах переработки пластмасс.


Димитриенко Ю.И., Шугуан Ли Конечно-элементное моделирование неизотермического стационарного течения неньютоновской жидкости в сложных областях. Математическое моделирование и численные методы, 2018, № 2, с. 70–95.



539.3 Конечно-элементное моделирование повреждаемости и долговечности композитных элементов конструкций с дефектами типа расслоения

Димитриенко Ю.И.(МГТУ им.Н.Э.Баумана), Юрин Ю.В.(МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2017-3-4970


Разработана методика для моделирования повреждаемости при циклическом нагружении элементов конструкций из слоисто-волокнистых композиционных материалов с дефектами типа расслоения. Методика состоит из трех этапов, итерационно повторяющихся в цикле по времени: конечно-элементного моделирования макроскопического напряженно-деформированного состояния в конструкции с дефектами; моделирования микроскопического напряженно-деформированного состояния в окрестности расслоения; моделирования накопления повреждений в матрице, соединяющей слои армирующих волокон в окрестности дефекта. В модели учитывается криволинейная анизотропия композиционного материала в составе конструкций сложной геометрической формы. Приведен пример численного расчета фрагмента композитной конструкции несущей лопасти вертолета с учетом дефекта типа расслоения. Продемонстрирована возможность применения разработанной методики для моделирования повреждаемости в сложных композитных конструкциях. Конечно-элементное решение макроскопической задачи реализовано с помощью программной платформы SMCM, разработанной в Научно-образовательном центре «Суперкомпьютерное инженерное моделирование и разработка программных комплексов» (НОЦ «СИМПЛЕКС») МГТУ им. Н.Э. Баумана.


Димитриенко Ю.И., Юрин Ю.В. Конечно-элементное моделирование поврежда- емости и долговечности композитных элементов конструкций с дефектами типа рас- слоения. Математическое моделирование и численные методы, 2017, No 3, с. 49–70.



539.3 Конечно-элементное моделирование эффективных вязкоупругих свойств однонаправленных композиционных материалов

Димитриенко Ю.И.(МГТУ им.Н.Э.Баумана), Губарева Е.А.(МГТУ им.Н.Э.Баумана), Сборщиков С.В.(МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-2-2848


Предложена методика расчета эффективных вязкоупругих характеристик композиционных материалов при установившихся циклических колебаниях, основанная на методе асимптотического осреднения периодических структур и конечно-элементном решении локальных задач вязкоупругости на ячейке периодичности композитов. Приведены примеры численного моделирования вязкоупругих характеристик однонаправленно-армированных композитов и расчетов комплексных тензоров концентрации напряжений в ячейке периодичности. Проведен сравнительный анализ зависимостей тангенса угла потерь комплексных модулей упругости композита от частоты колебаний, полученных с помощью метода конечных элементов и по приближенным смесевым формулам. Показано, то использование приближенных смесевых формул для расчета вязкоупругих характеристик, которые часто применяют для оценки диссипативных характеристик композитов, может давать существенную погрешность в расчетах.


Димитриенко Ю. И., Губарева Е. А., Сборщиков С. В. Конечно-элементное моделирование эффективных вязкоупругих свойств однонаправленных композиционных материалов. Математическое моделирование и численные методы, 2014, №2 (2), c. 28-48



5 Математическое и компьютерное моделирование — основа современных инженерных наук

Александров А.А.(МГТУ им.Н.Э.Баумана), Димитриенко Ю.И.(МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-1-None



Александров А. А., Димитриенко Ю. И. Математическое и компьютерное моделирование — основа современных инженерных наук. Математическое моделирование и численные методы, 2014, №1 (1), c. 3-4



539.3 Многомасштабное моделирование многослойных тонких композитных пластин с уединенными дефектами

Димитриенко Ю.И.(МГТУ им.Н.Э.Баумана), Юрин Ю.В.(МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2016-4-4766


Разработана многомасштабная модель деформирования многослойных тонких пластин из композиционных материалов с уединенными дефектами. Модель основана на асимптотическом анализе общих трехмерных уравнений механики деформируемого твердого тела. Общее решение трехмерных уравнений сведено к решению задач для тонких пластин без дефектов и локальных трехмерных задач в окрестности дефекта с условием затухания решения на удалении от дефекта. Для расчета многослойных пластин использованы локальные задачи, которые позволяют найти явное решение для всех шести компонент тензора напряжений, в области без дефекта. В зоне дефекта напряжения и перемещения представляет собой суперпозицию двух решений: полученного на основе двумерного расчета пластин и локальной трехмерной задачи механики. Приведен пример численного конечно элементного решения локальной задачи механики для трехслойной композитной пластины с уединенным дефектом в среднем слое. Показано, что влияние дефекта локализовано в непосредственной его окрестности, а максимум концентрации трансверсальных напряжений достигается в окрестности вершины дефекта.


Димитриенко Ю. И., Юрин Ю. В. Многомасштабное моделирование многослойных тонких композитных пластин с уединенными дефектами. Математическое моделирование и численные методы, 2016, №4 (12), c. 47-66



532.51 Многомасштабное моделирование процессов фильтрации жидкого связующего в композитных конструкциях, изготавливаемых методом RTM

Димитриенко Ю.И.(МГТУ им.Н.Э.Баумана), Богданов И.О.(МГТУ им. Н.Э.Баумана)


doi: 10.18698/2309-3684-2017-2-327


Предложена математическая модель многомасштабного процесса фильтрации слабосжимаемых жидкостей и газов в периодических пористых средах применительно к процессу производства композиционных материалов на основе метода RTM. Применение метода асимптотического осреднения позволило сформулировать так называемые локальные задачи фильтрации для отдельной поры и глобальную задачу неустановившейся фильтрации слабосжимаемых жидкостей. Рассмотрены две модели слабосжимаемой жидкости: классическая, основанная на уравнении состояния Маскета, требующем задания начальных постоянных давления и плотности жидкости, и обобщенная модель, основанная на том же уравнении, но требующая задания только начальной плотности жидкости, использующая вместо начального постоянного давления неизвестное гидростатическое давление в жидкости. Представлены результаты моделирования процесса пропитки образца
материала наполнителя связующим с использованием двух указанных моделей слабосжимаемой жидкости.


Димитриенко Ю.И., Богданов И.О. Многомасштабное моделирование процес- сов фильтрации жидкого связующего в композитных конструкциях, изготавливае- мых методом RTM. Математическое моделирование и численные методы, 2017, No 2, с. 3–27.



539.3+519.86 Многомасштабное моделирование упругопластических композитов с учетом повреждаемости

Димитриенко Ю.И.(МГТУ им.Н.Э.Баумана), Губарева Е.А.(МГТУ им.Н.Э.Баумана), Сборщиков С.В.(МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2016-2-323


Предложена модель деформирования упругопластических композиционных материалов периодической структуры с учетом повреждаемости фаз композита, основанная на варианте деформационной теории пластичности при активном нагружении. Для моделирования эффективных характеристик упругопластических композитов применен метод асимптотической гомогенизации периодических структур. Для численного решения локальных задач упругопластичности с учетом повреждаемости на ячейке периодичности предложен вариант итерационного метода линеаризации, а для численного решения линеаризованных задач на ячейке периодичности — метод конечных элементов с использованием программной среды SMCM, разработанной в Научно-образовательном центре «Суперкомпьютерное инженерное моделирование и разработка программных комплексов» (СИМПЛЕКС) МГТУ им. Н.Э. Баумана. Приведены примеры численных расчетов для дисперсно-армированного металлокомпозита (алюминиевой матрицы, наполненной частицами SiC). Представлены результаты численного моделирования процессов деформирования, накопления повреждений и разрушения металлокомпозита.


Димитриенко Ю. И., Губарева Е. А., Сборщиков С. В. Многомасштабное моделирование упругопластических композитов с учетом повреждаемости. Математическое моделирование и численные методы, 2016, №2 (10), c. 3-23



539.3 Моделирование несжимаемых слоистых композитов с конечными деформациями на основе метода асимптотического осреднения

Димитриенко Ю.И.(МГТУ им.Н.Э.Баумана), Губарева Е.А.(МГТУ им.Н.Э.Баумана), Кольжанова Д.Ю.(МГТУ им. Н.Э.Баумана), Каримов С.Б.(МГТУ им. Н.Э.Баумана)


doi: 10.18698/2309-3684-2017-1-3254


Представлены результаты разработки модели деформирования несжимаемых слоистых композитов с конечными деформациями по характеристикам отдельных слоев. Предложен вариант метода асимптотического осреднения для слоистых нелинейно-упругих несжимаемых композитов с конечными деформациями и периодической структурой. Использовано универсальное представление определяющих соотношений для несжимаемых слоев композита, предложенное Ю.И. Димитриенко, позволяющее проводить моделирование одновременно для комплекса различных нелинейно-упругих моделей сред, отличающихся выбором пары энергетических тензоров. Доказано, что, если все слои композита являются несжимаемыми, то композит в целом также является несжимаемой, но анизотропной средой. Рассмотрена задача об одноосном растяжении слоистой пластины из несжимаемых слоев с конечными деформациями, с помощью разработанного метода рассчитаны эффективные диаграммы деформирования, связывающие компоненты осредненных тензоров напряжений Пиолы — Кирхгофа и градиента деформаций, а также распределение напряжений в слоях композита.
Разработанный метод расчета эффективных диаграмм деформирования и напряжений в слоях композита может быть использован при проектировании эластомерных композитов с заданными свойствами.


Димитриенко Ю. И., Губарева Е. А., Кольжанова Д. Ю., Каримов С. Б. Моделирование несжимаемых слоистых композитов с конечными деформациями на основе метода асимптотического осреднения. Математическое моделирование и численные методы, 2017, №1 (13), c. 32-54



539.3 Моделирование упругопластических характеристик монокристаллических интерметаллидных сплавов на основе микроструктурного численного анализа

Димитриенко Ю.И.(МГТУ им.Н.Э.Баумана), Губарева Е.А.(МГТУ им.Н.Э.Баумана), Сборщиков С.В.(МГТУ им.Н.Э.Баумана), Базылева О.А.(ФГУП «ВИАМ» ГНЦ РФ), Луценко А.Н.(ФГУП «ВИАМ» ГНЦ РФ), Орешко Е.И.(ФГУП «ВИАМ» ГНЦ РФ)


doi: 10.18698/2309-3684-2015-2-322


Предложена модель микроструктуры двухфазных монокристаллических интерметаллидных сплавов в виде периодической структуры гексагонального типа, а также математическая модель упругопластического деформирования монокристаллического сплава, основанная на методе асимптотической гомогенизации периодических структур. Для фаз используется деформационная теория пластично-сти при активном нагружении с учетом эффекта их повреждаемости. Для численных расчетов по разработанной модели использован жаропрочный моно-кристаллический сплав ВКНА-1В. Проведены конечно-элементные расчеты микромеханических процессов деформирования и разрушения монокристаллического сплава ВКНА-1В. Установлено, что при растяжении максимальные значения параметра повреждаемости фаз, определяющего зону начала микроразрушения сплава, достигаются в зонах, прилегающих к поверхностям раздела фаз и в местах максимального искривления геометрической формы фаз. Проведены расчеты диаграмм деформирования жаропрочных сплавов в области пластичности, которые показали достаточно хорошее совпадение с экспериментальными данными.


Димитриенко Ю. И., Губарева Е. А., Сборщиков С. В., Базылева О. А., Луценко А. Н., Орешко Е. И. Моделирование упругопластических характеристик монокристаллических интерметаллидных сплавов на основе микроструктурного численного анализа. Математическое моделирование и численные методы, 2015, №2 (6), c. 3-22



539.3+519.86 Модель многомерной деформируемой сплошной среды для прогнозирования динамики больших массивов индивидуальных данных

Димитриенко Ю.И.(МГТУ им.Н.Э.Баумана), Димитриенко О.Ю.(МГТУ им. Н.Э.Баумана)


doi: 10.18698/2309-3684-2016-1-105122


На основе разработанной авторами ранее модели многомерных сплошных сред в пространствах высокой размерности (более трех) предложена концепция применения этой модели для одной из главных задач, возникающих в теории обработки больших массивов данных — прогнозирования динамики изменения кластеров данных. Модель многомерных сплошных сред в пространствах высокой размерности включает в себя интегральные законы сохранения, которые сформулированы для кластеров информационных данных, а также модель кинематики движения и деформации кластеров. Разработана модель деформируемого многомерного кластера, движение которого в многомерном пространстве данных включает в себя поступательное, вращательное движение и однородную деформацию растяжения-сжатия. Сформулирована система дифференциальных тензорных уравнений, описывающих движение деформируемого многомерного кластера во времени. Разработан численный алгоритм решения этой системы дифференциальных уравнений для эллипсоидальной модели многомерного кластера. Рассмотрен пример применения разработанной модели для прогнозирования динамики экономических данных — данных о покупках товаров в крупном супермаркете. Приведены результаты прогнозирования данных о покупках различных групп покупателей.


Димитриенко Ю. И., Димитриенко О. Ю. Модель многомерной деформируемой сплошной среды для прогнозирования динамики больших массивов индивидуальных данных. Математическое моделирование и численные методы, 2016, №1 (9), c. 105-122



519.6:533.6 Применение метода RKDG для численного решения трехмерных уравнений газовой динамики на неструктурированных сетках

Димитриенко Ю.И.(МГТУ им.Н.Э.Баумана), Коряков М.Н.(МГТУ им.Н.Э.Баумана), Захаров А.А.(МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2015-4-7591


Рассмотрено применение конечно-элементного метода RKDG (Runge — Kutta discontinuous Galerkin) для численного интегрирования трехмерной системы уравнений идеального газа на неструктурированных сетках. Проведено решение двух тестовых задач с помощью представленного алгоритма. Для каждой задачи приведено сравнение с известными аналитическими решениями или же с табличными данными. Дана оценка погрешности решения.


Димитриенко Ю. И., Коряков М. Н., Захаров А. А. Применение метода RKDG для численного решения трехмерных уравнений газовой динамики на неструктурированных сетках. Математическое моделирование и численные методы, 2015, №4 (8), c. 75-91



539.3 Численное моделирование деформирования и прочности трехслойных композитных конструкций с дефектами

Димитриенко Ю.И.(МГТУ им.Н.Э.Баумана), Юрин Ю.В.(МГТУ им.Н.Э.Баумана), Федонюк Н.Н.(ФГУП «Крыловский государственный научный центр»)


doi: 10.18698/2309-3684-2016-3-323


Разработана многоуровневая модель для многомасштабного деформирования трехслойных (сэндвичевых) конструкций из полимерных композиционных материалов типа пластин с заполнителем на основе пенопласта, учитывающая микромеханические процессы деформирования и повреждаемости матрицы, армирующего наполнителя и пенопласта, а также макроскопические дефекты типа непропитки композитных обшивок. Проведено конечно-элементное моделирование напряженно-деформированного состояния, повреждаемости и разрушения трехслойных пластин с обшивками из гибридных композитов из углепластика, с различными размерами дефекта типа непропитки, при изгибе равномерным давлением. Установлены особенности процесса деформирования и повреждаемости данного типа композитных конструкций. Разработанная методика может быть применена для расчета деформирования, повреждаемости и разрушения трехслойных пластин из полимерных композиционных материалов, применяемых в различных отраслях промышленности: судостроении, авиастроении, ракетостроении.


Димитриенко Ю. И., Юрин Ю. В., Федонюк Н. Н. Численное моделирование деформирования и прочности трехслойных композитных конструкций с дефектами. Математическое моделирование и численные методы, 2016, №3 (11), c. 3-23



539.3 Численное моделирование и экпериментальное исследование деформирования упругопластических пластин при смятии

Димитриенко Ю.И.(МГТУ им.Н.Э.Баумана), Губарева Е.А.(МГТУ им.Н.Э.Баумана), Сборщиков С.В.(МГТУ им.Н.Э.Баумана), Ерасов В.С.(ФГУП «ВИАМ» ГНЦ РФ), Яковлев Н.О.(ФГУП «ВИАМ» ГНЦ РФ)


doi: 10.18698/2309-3684-2015-1-6782


Предложена методика численного конечно-элементного решения задачи овализации, которую используют при экспериментальной отработке новых материалов для авиационной промышленности, в целях определения сопротивления деформированию элементов конструкций с наличием концентраторов напряжений, главным образом, соединительных элементов. Методика основана на трехмерном конечно-элементном решении задачи упругопластического деформирования пластин с отверстием при смятии и предназначена для сокращения экспериментальных исследований путей замены их на численные эксперименты. Используется модель малых упругопластических деформаций Ильюшина. Представлены результаты численного моделирования трехмерного напряженно-деформированного состояния упругопластических пластин при смятии, а также результаты экспериментальных исследований деформирования пластин из алюминиевого сплава 163. Показано, что результаты численного и экспериментального моделирования деформирования пластин при смятии достаточно хорошо совпадают.


Димитриенко Ю. И., Губарева Е. А., Сборщиков С. В., Ерасов В. С., Яковлев Н. О. Численное моделирование и экпериментальное исследование деформирования упругопластических пластин при смятии. Математическое моделирование и численные методы, 2015, №1 (5), c. 67-82



539.3 Численное моделирование сопряженных аэрогазодинамических и термомеханических процессов в композитных конструкциях высокоскоростных летательных аппаратов

Димитриенко Ю.И.(МГТУ им.Н.Э.Баумана), Коряков М.Н.(МГТУ им.Н.Э.Баумана), Захаров А.А.(МГТУ им.Н.Э.Баумана), Строганов А.С.(МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-3-324


Предложен алгоритм численного моделирования сопряженных аэрогазодинамических и термомеханических процессов в композитных конструкциях высокоскоростных летательных аппаратов, который позволяет рассчитывать все параметры трехмерного аэрогазодинамического потока в окрестности поверхности аппарата, теплообмен на поверхности, процессы внутреннего тепломассопереноса в конструкции из термодеструктирующего полимерного композитного материала, а также процессы изменения термодеформирования композитной конструкции, включающие в себя эффекты изменения упругих характеристик композита, переменную тепловую деформацию, усадку, вызванную термодеструкцией, образование внутрипорового давления газов в композите. Приведен пример численного моделирования сопряженных процессов в модельной композитной конструкции высокоскоростного летательного аппарата, иллюстрирующий возможности предложенного алгоритма.


Димитриенко Ю. И., Коряков М. Н., Захаров А. А., Строганов А. С. Численное моделирование сопряженных аэрогазодинамических и термомеханических процессов в композитных конструкциях высокоскоростных летательных аппаратов. Математическое моделирование и численные методы, 2014, №3 (3), c. 3-24



539.3 Численное решение обратных трехмерных задач восстановления нагрузок, действующих на композитные элементы конструкций

Димитриенко Ю.И.(МГТУ им.Н.Э.Баумана), Юрин Ю.В.(МГТУ им.Н.Э.Баумана), Еголева Е.С.(МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2017-4-4859


Предложен метод численного решения обратных трехмерных задач восстановления полей нагрузок, действующих на композитные элементы конструкций, на основе известной информации об их перемещениях на некоторой поверхности. Задачи данного типа возникают при создании систем встроенной диагностики перемещений конструкций и интеллектуальных композитных конструкций. Восстановленное поле нагрузок, действующих на части внешней поверхности композитной конструкции, используется для расчета напряженно-деформированного состояния и прогнозирования ресурса конструкции. Предложенный метод базируется на альтернирующем алгоритме решения обратных задач восстановления нагрузок в задаче теории упругости и методе конечного элемента для решения прямых задач теории упругости. Рассмотрен пример решения обратной задачи восстановления нагрузок, воздействующих на элементы конструкций из слоисто-волокнистых композиционных материалов.


Димитриенко Ю.И., Юрин Ю.В., Еголева Е.С. Численное решение обратных трехмерных задач восстановления нагрузок, действующих на композитные элемен- ты конструкций. Математическое моделирование и численные методы, 2017, No 4, с. 48–59.