539.3 Computational modeling of conjugated gasdynamic and thermomechanical processes in composite structures of high speed aircraft

Dimitrienko Y. I. (Bauman Moscow State Technical University), Koryakov M. N. (Bauman Moscow State Technical University), Zakharov A. A. (Bauman Moscow State Technical University), Stroganov A. S. (Bauman Moscow State Technical University)

CONJUGATED PROCESSES, AEROGASDYNAMICS, THERMOMECHANICS, HYPERSONIC FLOWS, HEAT AND MASS TRANSFER, THERMODESTRUCTION, COMPOSITES, COMPOSITE MATERIALS, THERMAL DEFORMATION, PORE PRESSURE, THERMAL STRAINS, BUNDLE.


doi: 10.18698/2309-3684-2014-3-324


In the article we propose an algorithm for the numerical simulation of conjugate gasdynamic and thermomechanical processes in composite structures of high-speed aircraft. The algorithm allows calculating all parameters of the three-dimensional gasdynamic flow near the surface of the aircraft, heat exchange on the surface, heat and mass transfer processes in the internal structure of thermodestructive polymer composite, as well as processes of composite construction thermodeformation, including the effects of changes in the elastic characteristics of the composite, variable thermal deformation, shrinkage caused by thermal degradation, building up interstitial gas pressure in the composite. An example of numerical simulation of conjugated processes in a model composite construction of high-speed aircraft illustrates the possibilities of the proposed algorithm.


[1] Anderson J.D. Hypersonic and high-temperature gas dynamics. 2nd ed. American Institute of Aeronautics and Astronautics, Reston, Virginia, 2006, 232 p.
[2] Lunev V.V. Hypersonic gasdynamics. Moscow, Mashinostroenie Publ., 1975, 330 p.
[3] Tirskiy G.A., et. al. Hypersonic gasdynamics and heat and mass transfer in reentry spacecrafts and planetary probes. Moscow, Fizmatlit Publ., 2011, 548 p.
[4] Lesin A.B., Lunev V.V. Mekhanika zhidkosti i gaza. Fluid Mechanics, 1994, no. 2, .
[5] McNamara J., Friedmann P. Aeroelastic and aerothermoelastic analysis of hypersonic vehicles: Current status and future trends. 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 23−26 April 2007, Honolulu, Hawaii. URL: http://www.mecheng.osu.edu/lab/cael/sites/default/files/AIAA-2007-2013
[6] Crowell A.R., McNamara J.J., Miller B.A. Hypersonic aerothermoelastic response prediction of skin panels using computational fluid dynamic surrogates. ASDJournal, 2011, vol. 2, no. 2, pp. 3−30.
[7] Kotenev V.P., Sysenko V.A. Matematicheskoe modelirovanie i chislennye menody. Mathematical Modeling and Numerical Methods, 2014, no. 1, pp. 68−81.
[8] Bratchev A.V., Zabarko D.A., Vatolina E.G., Korobkov A.A., Sakharov V.I. Izvestiya Instituta inzhenernoy fiziki. Proceedings of the Engineering Physics Institute, 2009, vol. 2, no. 12, pp. 42−49.
[9] Polezhaev Yu.V., Yurevich F.B. Thermal protection. Moscow, Energiya Publ., 1976, 368 p.
[10] Dimitrienko Yu.I., Zakharov A.A., Koryakov, M.N. Vestnic MGTU im. N.E. Baumana. Seria Estestvennye nauki – Herald of the Bauman Moscow State Technical University. Series: Natural Sciences, 2011, special issue, pp. 136−150.
[11] Dimitrienko Yu.I., Kotenev V.P., Zakharov A.A. The adaptive banded grid method for numerical simulation in gas dynamics. Moscow, Fizmatlit Publ., 2011, 280 p.
[12] Dimitrienko Yu.I., Koryakov, M.N., Zakharov A.A., Syzdykov E.K. Vestnic MGTU im. N.E. Baumana. Seria Estestvennye nauki. Herald of the Bauman Moscow State Technical University. Series: Natural Sciences, 2011, no. 2, pp. 87−97.
[13] Gilmanov A.N. The adaptive grid methods in gas dynamics problems. Moscow, Fizmatlit Publ., 2000, 248 p.
[14] Dimitrienko Yu.I. Composite material mechanics under high temperature. Moscow, Mashinostroenie Publ., 1997, 366 p.
[15] Dimitrienko Yu.I. Thermal stresses and heat mass-transfer in ablating composite materials. International Journal of Heat Mass Transfer, 1995, vol. 38, no. 1, pp. 139−146.
[16] Dimitrienko Yu.I. Thermal stresses in ablative composite thin-walled structures under intensive heat flows. International Journal of Engineering Science, 1997, vol. 35, no. 1, pp. 15−31.
[17] Dimitrienko Yu.I. . Composite science and technologies, 1999, vol. 59, pp. 1041−1053.
[18] Dimitrienko Yu.I., Minin V.V., Syzdykov E.K. Mekhanika kompozitsionnykh materialov i konstruktsiy. Mechanics of Composite Materials and Structures, 2011, vol. 17, no. 1, pp. 71−91.
[19] Dimitrienko Yu.I., Minin V.V., Syzdykov E.K. Matematicheskoe modelirovanie. Mathematical Modeling. 2011, vol. 23, no. 9, pp. 14–32.
[20] Dimitrienko Yu.I., Minin V.V., Syzdykov E.K. . Vychislitelnye tekhnologii. Computational Technologies, 2012, vol. 17, no. 2, pp. 44−60.
[21] Dimitrienko Yu.I., Zakharov A.A., Koriakov M.N., Syzdykov E.K. Inzhenernyi zhurnal: nauka i innovatsii. Engineering Journal: Science and Innovations, 2012, issue 11. Available at: http://engjournal.ru/articles/426/426.pdf .
[22] Dimitrienko Yu.I. Tensor calculus. Moscow, Vysshaya Shkola Publ., 2001, 575 p.
[23] Krasnov N.F. Aerodynamics. In 2 volumes. Moscow, Vysshaya Shkola Publ., 1980, 901 p.


Dimitrienko Y., Koryakov M., Zakharov A., Stroganov A. Computational modeling of conjugated gasdynamic and thermomechanical processes in composite structures of high speed aircraft. Маthematical Modeling and Coтputational Methods, 2014, №3 (3), pp. 3-24



Download article

Колличество скачиваний: 116