#### 539.3+519.86 Multiscale modeling of elastic-plastic composites with an allowance for fault probability

##### Dimitrienko Y. I. (Bauman Moscow State Technical University), Gubareva E. A. (Bauman Moscow State Technical University), Sborschikov S. V. (Bauman Moscow State Technical University)

###### NUMERICAL MODELING, COMPOSITES, METHOD OF ASYMPTOTIC HOMOGENIZATION, ELASTICPLASTIC MATERIALS, COMPOSITE DESTRUCTION, FINITE ELEMENTS METHOD, LOCAL PROBLEMS, PERIODICITY CELL, ALUMINUM MATRIX, SIC PARTICLES

doi: 10.18698/2309-3684-2016-2-323

The purpose of this article is to propose a model of deformation of elastic-plastic composite materials with periodic structures with an allowance for fault probability of the composite phases. The model is based on a variant of the deformation theory of plasticity with the active loading. To simulate the effective characteristics of elastic-plastic composites, we applied the method of asymptotic homogenization of periodic structures. For numerical solution of linearized problems on the periodicity cell we offered the finite elements method using SMCM software medium developed at the Scientific-Educational Center of Supercomputer Engineering Modeling and Program Software Development of the Bauman Moscow State Technical University. We provide the research with the examples of numerical computations for dispersion-reinforced metal composites (aluminum matrix filled with SiC particles). Finally, we present the results of numerical modeling of deformation processes, damage accumulation and metal-composite destruction.

[1] Adams D.F. Uprugoplasticheskoe povedenie kompozitov. Kompozitsionnye materialy. T. 2: Mekhanika kompozitsionnykh materialov [Elastic-plastic behavior of composites. Composite materials. Vol. 2: Mechanics of composite materials]. Moscow, Mir Publ., 1978, pp. 196–241.
[2] Kristensen R.M. Vvedenie v mekhaniku kompozitov [Introduction to mechanics of composites]. Moscow, Mir Publ., 1982, 336 p.
[3] Vildeman V.E., Sokolkin Yu.V., Tashkinov A.A. Mekhanika neuprugogo deformirovaniya i razrusheniya kompozitsionnykh materialov [Mechanics of inelastic deformation and destruction of composite materials]. Moscow, Nauka Publ., 1997, 288 p.
[4] Nguyen B.N., Bapanapalli S.K., Kunc V., Phelps J.H., Tucker C.L. Journal of Composite Materials, 2009, vol. 43, no. 3, pp. 217–246.
[5] Tarnopolskiy Yu.M., Zhigun I.G., Polyakov V.A. Prostranstvennoarmirovannye kompozitsionnye materialy [Space-reinforced composite materials]. Moscow, Mashinostroenie Publ., 1987, 223 p.
[6] Bensoussan A., Lions J.L., Papanicolaou G. Asymptotic analysis for periodic structures. North-Holland, 1978.
[7] Bakhvalov N.S., Panasenko G.P. Osrednenie protsessov v periodicheskikh sredakh [Process averaging in periodic media]. Moscow, Nauka Publ., 1984, 352 p.
[8] Sanches-Palensiya E. Neodnorodnye sredy i teoriya kolebaniy [Nonhomogeneous media and vibration theory]. Moscow, Mir Publ., 1984, 472 p.
[9] Pobedrya B.E. Mekhanika kompozitsionnykh materialov [Mechanics of composite materials]. Moscow, Lomonosov MSU Publ., 1984, 324 p.
[10] Manevitch L.I., Andrianov I.V., Oshmyan V.G. Mechanics of Periodically Heterogeneous Structures. Springer, 2002, 264 p.
[11] Khdir Y.K., Kanit T., Zaïri F., Naït-Abdelaziz M. International Journal of Solids and Structures, 2013, vol. 50, no. 18, pp. 2829–2835.
[12] Dimitrienko Yu.I., Kashkarov A.I. Vestnik MGTU im. N.E. Baumana. Seria Estestvennye nauki — Herald of the Bauman Moscow State Technical University. Series: Natural Sciences, 2002, no. 2, pp. 95–108.
[13] Dimitrienko Yu.I., Sborshchikov S.V., Belenovskaya Yu.V., Aniskovich V.A., Perevislov S.N. Science and Education, 2013, no. 11. DOI 10.7463/1113.0659438
[14] Dimitrienko Yu.I., Yakovlev N.O., Erasov V.S., Fedonyuk N.N., Sborshchikov S.V., Gubareva E.A., Krylov V.D., Grigoryev M.M., Prozorovskiy A.A. Kompozity i nanostruktury — Composites and Nanostructures, 2014, vol. 6, no. 1, pp. 32–48.
[15] Dimitrienko Yu.I., Gubareva E.A., Sborshchikov S.V., Fedonyuk N.N. Science and Education, 2014, no. 11. DOI 10.7463/1114.0734246
[16] Dimitrienko Yu.I., Gubareva E.A., Sborshchikov S.V. Matematicheskoe modelirovanie i chislennye metody — Mathematical Modeling and Computational Methods, 2014, no. 2, pp. 28–49.
[17] Dimitrienko Yu.I., Yakovlev D.O. Mekhanika kompozitsionnykh materialov i konstruktsiy — Mechanics of Composite Materials and Structures, 2014, vol. 20, no. 2, pp. 259–282.
[18] Dimitrienko Yu.I. Vestnik MGTU im. N.E. Baumana. Seria Estestvennye nauki — Herald of the Bauman Moscow State Technical University. Series: Natural Sciences, 2002, no. 1, pp. 58–73.
[19] Dimitrienko Yu.I., Dimitrienko I.D. European Journal of Mechanics — B/Fluids, 2013, vol. 37, pp. 174–179.
[20] Dimitrienko Yu.I., Dimitrienko I.D., Sborshchikov S.V. Applied Mathematical Sciences, 2015, vol. 9, no. 145, pp. 7211–7220. Available at: http://www.m-hikari.com/ams/ams-2015/ams-145-148-2015/p/dimitrienkoAMS145-148-2015.pdf
[21] Dimitrienko Yu.I., Kashkarov A.I., Makashov A.A. Vestnik MGTU im. N.E. Baumana. Seria Estestvennye nauki — Herald of the Bauman Moscow State Technical University. Series: Natural Sciences, 2007, no. 1, pp. 102–116.
[22] Talreja R., ed. Damage Mechanics of Composite Materials. Oxford, Elsevier Science, 1994.
[23] Dimitrienko Yu.I. Mekhanika sploshnoy sredy. T. 4: Osnovy mekhaniki tverdogo tela [Continuum Mechanics. Vol. 4: Fundamentals of solid mechanics]. Moscow, BMSTU Publ., 2013, 624 p.
[24] Dimitrienko Yu.I. Tenzornoe ischislenie [Tensor calculus]. Moscow, Vysshaya shkola, 2001, 575 p.

Dimitrienko Y., Gubareva E., Sborschikov S. Multiscale modeling of elastic-plastic composites with an allowance for fault probability. Маthematical Modeling and Coтputational Methods, 2016, №2 (10), pp. 3-23