Рубрика: "1.1.8. Механика деформируемого твердого тела (физико-математические науки)"



539.26 Анализ эмпирических моделей кривых деформирования упругопластических материалов (обзор). Часть 2

Головина Н. Я. (Тюменский индустриальный университет), Белов П. А. (Институт прикладной механики РАН)


doi: 10.18698/2309-3684-2022-2-1427


В статье представлено продолжение обзора работ, посвященных исследованиям свойств упругопластических материалов. В первой части были рассмотрены универсальные законы деформирования, содержащие менее четырех формальных параметров. В результате обзора были сформулированы требования к формулировке эмпирических законов деформирования упругопластических материалов. В том числе, был сделан вывод о том, что закон деформирования должен быть, как минимум четырех-параметрическим. Во второй части данной статьи рассмотрены и проанализированы эмпирические законы деформирования, содержащие четыре и более параметров. Сравнение рассмотренных эмпирических кривых с выборкой экспериментальных точек осуществляется стандартной процедурой минимизации суммарного квадратичного отклонения и использованием метода градиентного спуска для определения минимума функции многих переменных. Для оценки предсказательной силы моделей на соответствие эксперименту, использована представительная выборка из 158 экспериментальных точек кривой деформирования российского титанового сплава ВТ6. Универсальные эмпирические законы деформирования, содержащие четыре формальных параметра, позволяют описать кривую деформирования с заданными на концах кривой напряжением и касательным модулем. Этот факт позволяет утверждать, что упругопластические свойства материалов могут быть выражены через геометрические параметры кривой деформирования. В свою очередь связь между упругопластическими свойствами материала и геометрией кривой деформирования, можно трактовать, как принцип «геометризации» упругопластических свойств материалов.


Головина Н.Я., Белов П.А. Анализ эмпирических моделей кривых деформирования упругопластических материалов (обзор). Часть 2. Математическое моделирование и численные методы, 2022, № 2, с. 16–29



004.9:621.7 Математическое моделирование процесса деформации металла на литейно-ковочном модуле с измененным приводом боковых бойков

Одиноков В. И. (ФГБОУ ВО «КнАГУ»), Дмитриев Э. А. (ФГБОУ ВО «КнАГУ»), Евстигнеев А. И. (ФГБОУ ВО «КнАГУ»), Потянихин Д. А. (ФГБОУ ВО «КнАГУ»), Квашнин А. Е. (ФГБОУ ВО «КнАГУ»)


doi: 10.18698/2309-3684-2021-3-323


В работе представлена математическая постановка и приведены результаты расчетов в задаче о деформировании металла на литейно-ковочном модуле с измененным приводом боковых бойков. Рассматривается сложная пространственная задача по определению напряженно-деформированного состояния области течения при нагружении внешней нагрузкой, изменяющейся с течением времени. Определяющие соотношения задачи основаны на теории течения. При решении задачи используется апробированный численный метод, а также численные схемы и комплекс программ, использованные ранее при решении подобных задач. В комплексе программ реализован шаговый алгоритм нагружения с учетом истории процесса и изменяющейся геометрии области течения. Малый временной шаг ассоциируется с поворотом эксцентричного вала на угол 10°. Область деформации разбивается на элементы ортогональной системой поверхностей (элементы имеют ортогональную форму). Для каждого элемента записывается в разностном виде сформулированная система уравнений, которая решается по разработанным численным схемам и алгоритмам с учетом начальных и граничных условий. Результатом решения являются поля напряжений и скорости перемещений по пространственной области. Приводится анализ полученных результатов. Делается сравнение с результатами решения действующей конструкции. В качестве деформируемого материала взят свинец, физические свойства которого аппроксимированы аналитической зависимостью по имеющимся экспериментальным данным. Физическая нелинейность системы уравнений реализуется при решении итерационным методом. Проведены локальные расчеты решения задачи на трех вариантах разбиения области на элементы. Обоснован выбор плотности сетки, накладываемой на рассматриваемую область деформации. Результаты решения представлены в графическом виде. Показана эффективность процесса деформации по усовершенствованному способу на новой конструкции литейно-ковочного модуля.


Одиноков В.И., Дмитриев Э.А., Евстигнеев А.И., Потянихин Д.А., Квашнин А.Е. Математическое моделирование процесса деформации металла на литейно-ковочном модуле с измененным приводом боковых бойков. Математическое моделирование и численные методы, 2021, № 3, с. 3–23.



539.3 Моделирование динамических и спектральных вязкоупругих характеристик материалов на основе численного обращения преобразования Лапласа

Валишин А. А. (МГТУ им.Н.Э.Баумана), Тиняев М. А. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2022-1-4262


При проектировании изделий из композиционных материалов, предназначенных для эксплуатации в сложных условиях неоднородных деформаций и температур, важно учитывать вязкоупругие, в том числе спектральные и динамические, свойства связующего и наполнителей. В статье рассмотрены динамические характеристики (комплексный модуль, комплексная податливость, их действительные и мнимые части, тангенс угла потерь) и спектральные характеристики релаксации и ползучести и их зависимость друг от друга. Для всех известных типов ядер ползучести и ядер релаксации были найдены упомянутые выше характеристики. Для нахождения спектральных характеристик был использован один из численных метода обращения преобразования Лапласа — метод квадратурных формул с равными коэффициентами. Составлены алгоритмы и компьютерные программы для реализации этого метода. Полученные графики достаточно точные (максимальная погрешность вычислений в среднем не превосходит 5%), несмотря на то что на начальных участках времени погрешность очень заметна.


Валишин А.А., Тиняев М.А. Моделирование динамических и спектральных вязкоупругих характеристик материалов на основе численного обращения преобразования Лапласа. Математическое моделирование и численные методы, 2022, № 1, с. 42–62.



539.36 Моделирование изменения микроструктуры и упругих свойств сплавов в процессе контактной точечной сварки

Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Сальникова А. А. (МГТУ им.Н.Э.Баумана), Орешникова Е. А. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2023-4-4763


Предложена математическая модель фазовых превращений в стальных сплавов при контактной точечной сварке, учитывающая все этапы процесса: от разогрева и частичного расплавления металла, которые вызывают необратимые физико-химические превращения микроструктуры стали, до этапа охлаждения, при котором происходит отверждение и «возвратное» образование фаз сплава. Модель описывает изменения 3D микроструктуры стального сплава нагреве и последующем охлаждении с образованием ферритных и аустенитных структур. Предложен алгоритм вычисления констант модели с помощью специальной процедуры решения обратной задачи, а также алгоритм численного решения задачи прогнозирования изменения упругих свойств стали в процессе сварки, включающий в себя конечно-элементное 3D моделирование с помощью программного комплекса SMCM, разработанного на кафедре «Вычислительная математика и математическая физика» МГТУ им. Н.Э. Баумана. Приведен пример численного моделирования с помощью предложенной модели и алгоритма для стального сплава.


Димитриенко Ю.И., Сальникова А.А., Орешникова Е.А. Моделирование изменения микроструктуры и упругих свойств сплавов в процессе контактной точечной сварки. Математическое моделирование и численные методы, 2023, № 4, с. 47–63



539.3 «Химический» критерий для моделирования усталостной долговечности материалов, разносопротивляющихся растяжению-сжатию

Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Димитриенко А. Ю. (МГУ им. М.В. Ломоносова)


doi: 10.18698/2309-3684-2024-3-1842


Рассмотрена проблема разработки универсального критерия длительной усталостной прочности изотропных материалов, у которых накопление повреждений существенно отличается при нагружении в области растяжения и сжатия. Обычно для моделирования долговечности таких материалов применяют диаграммы Гудмана, в которых учитывается зависимость долговечности от коэффициента асимметрии нагружения. Однако, эта модель, как правило содержит только одну так называемую S-N кривую, в следствие чего кривые усталостной долговесности при разных коэффициентах асимметрии оказываются самоподобными, что далеко не всегда наблюдается в экспериментальных данных. Кроме того, диаграммы Гудмана применимы только для циклических нагружений. В данной статье предложено дальнейшее развитие «химического» критерия, который был разработах ранее в авторских работах, и который применим для широкого спектра нагрузок, как длительных статических, так и циклических с произвольной формой цикла нагружения. Развитие «химического» критерия усталостной прочности осуществлено за счет раздельного учета накоплений повреждений в области растяжения и сжатия. Для смешанных режимов нагружения в области растяжения-сжатия происходит суммирование особым образом накопления повреждений на участках растяжения и сжатия. Разработана методика определения констант предложенной модели усталостной долговечности. Показано, как строятся диаграммы Гудмана для разработанного варианта критерия усталостной долговечности. Рассмотен пример применения «химического» критерия для моделирования усталостной долговечности стали 34СrNiMo6.


Димитриенко Ю.И., Димитриенко А.Ю. «Химический» критерий для моделирования усталостной долговечности материалов, разносопротивляющихся растяжению-сжатию. Математическое моделирование и численные методы, 2024, № 3, с. 18–42.



539.3 Моделирование деформирования слоистых периодических композитов на основе теории пластического течения

Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Губарева Е. А. (МГТУ им.Н.Э.Баумана), Черкасова М. С. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2021-2-1537


Статья посвящена построению модели деформирования слоистых упруго– пластических композитов с периодической структурой. Все слои композита подчиняются теории пластического течения (ассоциативному закону пластичности) с различными поверхностями пластичности. Для решения указанной задачи применяется метод асимптотического осреднения Бахвалова–Победри. Получено аналитическое решение локальных задач пластического течения на ячейке периодичности. Построены эффективные упруго–пластические определяющие соотношения слоистого композита. Приведены примеры численного расчета диаграмм циклического деформирования упруго–пластического композита при различных сочетаниях слоев в композите.


Димитриенко Ю.И., Губарева Е.А., Черкасова М.С. Моделирование деформирования слоистых периодических композитов на основе теории пластического течения. Математическое моделирование и численные методы, 2021, № 2, с. 15–37.



539.3 Математическое моделирование усталостного разрушения при высокочастотных изгибных колебаниях образцов из титановых сплавов

Стратула Б. А. (Институт автоматизации проектирования РАН)


doi: 10.18698/2309-3684-2021-4-4557


На основе мультирежимной двухкритериальной модели циклической повреждаемости описан единообразный численный метод расчета различных режимов усталостного разрушения от малоцикловой до сверхмногоцикловой усталости. Этот метод позволяет проводить сквозной расчет эволюции трещиноподобных зон усталостного разрушения в материале, а также оценивать долговечность образцов от зарождения трещины до макроразрушения. Проведены расчеты усталостного разрушения образцов из титанового сплава при длительном циклическом нагружении по схеме трехточечного изгиба с развитием «квазитрещин» в режимах от многоцикловой до сверхмногоцикловой усталости. Проведено сравнение численных и экспериментальных результатов.


Стратула Б.А. Математическое моделирование усталостного разрушения при высокочастотных изгибных колебаниях образцов из титановых сплавов. Математическое моделирование и численные методы, 2021, № 4, с. 45–57.



539.36 Микроструктурная модель анизотропной теории течения для упруго-пластических слоистых композитов

Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Черкасова М. С. (МГТУ им.Н.Э.Баумана), Димитриенко А. Ю. (МГУ им. М.В. Ломоносова)


doi: 10.18698/2309-3684-2022-3-4770


Предложена микроструктурная модель слоистых упруго-пластических композитов на основе анизотропной теории течения. Модель представляет собой эффективные определяющие соотношения трансверсально-изотропной теории пластического течения, в которой константы модели определяются не экспериментально, а на основе аппроксимаций диаграмм деформирования композитов, полученных путем прямого численного решения задач на ячейке периодичности для базовых траекторий нагружения, которые возникают в методе асимптотического осреднения. Сформулирована задача идентификации констант этой модели композита, для численного решения этой задачи применяются методы оптимизации функционала ошибки. Представлены результаты численного моделирования предложенным методом для слоистых упруго-пластических композитов, показавшие хорошую точность аппроксимации численных диаграмм деформирования.


Димитриенко Ю.И., Черкасова М.С., Димитриенко А.Ю. Микроструктурная модель анизотропной теории течения для упруго-пластических слоистых композитов. Математическое моделирование и численные методы, 2022, № 3, с. 47–70.



539.3 Моделирование изгиба балок из резиноподобных материалов

Фирсанов В. В. (ФГБУ ВО "Московский авиационный институт")


doi: 10.18698/2309-3684-2021-4-316


Поскольку классические гипотезы Бернулли для балок и Кирхгофа для тонких пластин вступают в противоречие с дополнительным для резиноподобных (несжимаемых) материалов условием несжимаемости (неизменяемости объёма в процессе деформирования), предлагается модель расчёта для изгибаемой балки, не приводящая к серьёзному усложнению поставленной задачи по сравнению с классическим решением. Неизменяемость объёма проявляется при действии силовой нагрузки, в случае температурной нагрузки деформация изменения объёма не равна нулю. Отсутствие объёмных деформаций для резиноподобных материалов есть следствие закона Гука для подобного рода материалов. Суммируя линейные деформации, выраженные через напряжения и принимая коэффициент Пуассона 0,5, получим равенство нулю указанной суммы Многие резиноподобные материалы являются несжимаемыми и низкомодульными, что означает слабое их сопротивление растяжению и сдвигу, но сопротивление материала изменению объёма стремится к бесконечности, поэтому физические соотношения обобщённого закона Гука преобразуются в так называемые «неогуковские» уравнения связи напряжений и деформаций. Из двух независимых физических характеристик (модулей) для несжимаемых материалов остаётся лишь один модуль, характеризующий сопротивление среды изменению формы. В физических соотношениях для несжимаемого материала произведение бесконечно большого объёмного модуля на деформацию изменения объема, равную нулю, представляет собой неопределенность, которая заменяется некоторой силовой функцией, имеющей размерность напряжений и являющейся дополнительной неизвестной. В то же время, система определяющих уравнений механики несжимаемых сред дополняется уравнением неизменяемости объёма. Схема решения задачи в перемещениях для традиционных конструкционных материалов превращается в смешанную схему для резиноподобных материалов, поскольку для них в качестве основных искомых неизвестных выступают не только перемещения, но и упомянутая силовая.


Фирсанов В.В. Моделирование изгиба балок из резиноподобных материалов. Математическое моделирование и численные методы, 2021, № 4, с. 3–16.



<< 2