Рубрика: "1.1.8. Механика деформируемого твердого тела (физико-математические науки)"
doi: 10.18698/2309-3684-2022-2-2862
Рассматривается задача о построении теории расчета напряженно-деформированного состояния тонких многослойных упругих пластин, у которых на границе раздела слоев заданы линеаризованные условия проскальзывания. Решение данной задачи строится с помощью асимптотического анализа общих уравнений трехмерной теории упругости с условиями неидеального контакта слоев. Асимптотический анализ проводится по малому геометрическому параметру, представляющему отношение толщины пластины к ее характерной длине. Получены рекуррентные формулировки локальных квазиодномерных задач теории упругости с проскальзыванием. Для этих задач получены явные аналитические решения. Представлен вывод осредненных уравнений упругого равновесия многослойных пластин с учетом проскальзыванием слоев. Показано, что за счет эффекта проскальзывания слоев система осредненных уравнений теории многослойных пластин имеет повышенный — пятый порядок производных, в отличие от классического четвертого порядка, который имеет место в теории пластин Кирхгофа–Лява. Показано, что асимптотическая теория позволяет получить явное аналитическое выражение для всех шести компонент тензора напряжений в слоях пластины. Как частный случай рассмотрена задача о расчете напряженно-деформированного состояния четырехслойной пластины при изгибе равномерным давлением, с одним коэффициентом скольжения. Получено полное аналитическое решение этой задачи, в том числе — получены явные выражения для всех ненулевых компонент тензора напряжений. Проведен численный анализ решения осредненной задачи для композитной пластины, у которой слои представляют собой однонаправленно-армированные волокнистые материалы, ориентированные под разными углами. Проведен сравнительный анализ влияния углов армирования волокон и коэффициента скольжения слоев на перемещения пластины и распределение напряжений в слоях. Показано, что задача об изгибе пластины с проскальзыванием допускает существование спектра критических значений коэффициента скольжения, при переходе через которые перемещения и напряжения в слоях пластины существенным образом меняются, причем эти критические значения зависят от угла армирования слоев композита.
Димитриенко Ю.И., Губарева Е.А. Асимптотическая теория многослойных тонких упругих пластин с проскальзыванием слоев. Математическое моделирование и численные методы, 2022, № 2, с. 30–64
doi: 10.18698/2309-3684-2021-4-1744
Предложена модель определяющих соотношений упруго-пластических композитов, обладающих кубической симметрией свойств. К этому классу относится значительно число композиционных материалов: дисперсно-армированные композиты, у которых имеется упорядоченная, а не хаотическая система армирования, а также некоторые типы пространственно-армированных композитов. Для построения модели нелинейных определяющих соотношений использован тензорно-симметрийный подход, основанный на спектральных разложениях тензоров напряжений и деформаций, а также спектральном представлении нелинейных тензорных соотношений между этими тензорами. Рассмотрена деформационная теория пластичности, для которой использован тензорно-симметрийный подход, а также предложены конкретные модели для функций пластичности, зависящих от спектральных инвариантов тензора деформации. Для определения констант модели предложен метод, в котором эти константы вычисляются на основе аппроксимации кривых деформирования, полученных прямым численным решением трехмерных задач на ячейке периодичности упруго-пластических композитов. Эти задачи возникают в методе асимптотического осреднения периодических сред. Для решения задач на ячейке периодичности использован конечно-элементный метод и специальное программное обеспечение, реализующее решения задач на ячейках периодичности, разработанное в Научно-образовательном центре «Суперкомпьютерное инженерное моделирование и разработка программных комплексов» МГТУ им. Н.Э. Баумана. Рассмотрен пример расчета констант модели композита с помощью предложенного метода для дисперсно-армированного композита на основе металлической матрицы. А также проведена верификация предложенной модели для различных путей многоосного нагружения композита при прямом численном моделировании. Показано, что предложенная микроструктурная модель и алгоритм определения ее констант обеспечивают достаточно высокую точность прогнозирования упруго-пластического деформирования композита.
Димитриенко Ю.И., Сборщиков С.В., Димитриенко А.Ю., Юрин Ю.В. Микроструктурная модель деформационной теории пластичности квази-изотропных композиционных материалов. Математическое моделирование и численные методы, 2021, № 4, с. 17–44.
doi: 10.18698/2309-3684-2021-4-316
Поскольку классические гипотезы Бернулли для балок и Кирхгофа для тонких пластин вступают в противоречие с дополнительным для резиноподобных (несжимаемых) материалов условием несжимаемости (неизменяемости объёма в процессе деформирования), предлагается модель расчёта для изгибаемой балки, не приводящая к серьёзному усложнению поставленной задачи по сравнению с классическим решением. Неизменяемость объёма проявляется при действии силовой нагрузки, в случае температурной нагрузки деформация изменения объёма не равна нулю. Отсутствие объёмных деформаций для резиноподобных материалов есть следствие закона Гука для подобного рода материалов. Суммируя линейные деформации, выраженные через напряжения и принимая коэффициент Пуассона 0,5, получим равенство нулю указанной суммы Многие резиноподобные материалы являются несжимаемыми и низкомодульными, что означает слабое их сопротивление растяжению и сдвигу, но сопротивление материала изменению объёма стремится к бесконечности, поэтому физические соотношения обобщённого закона Гука преобразуются в так называемые «неогуковские» уравнения связи напряжений и деформаций. Из двух независимых физических характеристик (модулей) для несжимаемых материалов остаётся лишь один модуль, характеризующий сопротивление среды изменению формы. В физических соотношениях для несжимаемого материала произведение бесконечно большого объёмного модуля на деформацию изменения объема, равную нулю, представляет собой неопределенность, которая заменяется некоторой силовой функцией, имеющей размерность напряжений и являющейся дополнительной неизвестной. В то же время, система определяющих уравнений механики несжимаемых сред дополняется уравнением неизменяемости объёма. Схема решения задачи в перемещениях для традиционных конструкционных материалов превращается в смешанную схему для резиноподобных материалов, поскольку для них в качестве основных искомых неизвестных выступают не только перемещения, но и упомянутая силовая.
Фирсанов В.В. Моделирование изгиба балок из резиноподобных материалов. Математическое моделирование и численные методы, 2021, № 4, с. 3–16.
doi: 10.18698/2309-3684-2021-4-4557
На основе мультирежимной двухкритериальной модели циклической повреждаемости описан единообразный численный метод расчета различных режимов усталостного разрушения от малоцикловой до сверхмногоцикловой усталости. Этот метод позволяет проводить сквозной расчет эволюции трещиноподобных зон усталостного разрушения в материале, а также оценивать долговечность образцов от зарождения трещины до макроразрушения. Проведены расчеты усталостного разрушения образцов из титанового сплава при длительном циклическом нагружении по схеме трехточечного изгиба с развитием «квазитрещин» в режимах от многоцикловой до сверхмногоцикловой усталости. Проведено сравнение численных и экспериментальных результатов.
Стратула Б.А. Математическое моделирование усталостного разрушения при высокочастотных изгибных колебаниях образцов из титановых сплавов. Математическое моделирование и численные методы, 2021, № 4, с. 45–57.
doi: 10.18698/2309-3684-2023-4-4763
Предложена математическая модель фазовых превращений в стальных сплавов при контактной точечной сварке, учитывающая все этапы процесса: от разогрева и частичного расплавления металла, которые вызывают необратимые физико-химические превращения микроструктуры стали, до этапа охлаждения, при котором происходит отверждение и «возвратное» образование фаз сплава. Модель описывает изменения 3D микроструктуры стального сплава нагреве и последующем охлаждении с образованием ферритных и аустенитных структур. Предложен алгоритм вычисления констант модели с помощью специальной процедуры решения обратной задачи, а также алгоритм численного решения задачи прогнозирования изменения упругих свойств стали в процессе сварки, включающий в себя конечно-элементное 3D моделирование с помощью программного комплекса SMCM, разработанного на кафедре «Вычислительная математика и математическая физика» МГТУ им. Н.Э. Баумана. Приведен пример численного моделирования с помощью предложенной модели и алгоритма для стального сплава.
Димитриенко Ю.И., Сальникова А.А., Орешникова Е.А. Моделирование изменения микроструктуры и упругих свойств сплавов в процессе контактной точечной сварки. Математическое моделирование и численные методы, 2023, № 4, с. 47–63
doi: 10.18698/2309-3684-2024-2-1734
Статья посвящена моделированию деформирования композиционных материалов с конечными деформациями. Рассмотрены так называемые универсальные модели определяющих соотношений для компонентов композита, задающих сразу несколько классов нелинейной связи между тензором напряжений Пиолы—Кирхгофа и градиентом деформаций в рамках разных энергетических пар тензоров напряжений-деформаций. Применен метод асимптотического осреднения и сформулированы локальные задачи для решения задачи об определении осредненных свойств композитов с конечными деформациями. Рассмотрена вариационная постановка исходной задачи деформирования, так называемых локальных задач на ячейке периодичности и осредненной задачи для композита, позволившая применить МКЭ для численного решения указанных классов задач. Разработан программный модуль в составе программного комплекса Manipula/SMCM, который реализует предложенный численный алгоритм. Приведен пример численного решения задач на ячейке периодичности для 3D ортогонально-армированного композита с учетом больших деформаций матрицы и волокон, а также рассчитаны диаграммы деформирования композита для различных вариантов универсальных моделей определяющих соотношений.
Димитриенко Ю.И., Каримов С.Б., Димитриенко А.Ю. Моделирование конечных деформаций композиционных материалов на основе универсальных моделей Аn и метода асимптотического осреднения. Математическое моделирование и численные методы, 2024, № 2, с. 17–34.
doi: 10.18698/2309-3684-2022-1-1541
В рамках деформационной теории пластичности при активном нагружении предложена модель определяющих соотношений упруго-пластических композитов, относящихся к классу трансверсально-изотропных материалов. Для построения нелинейных определяющих соотношений использована теория спектральных разложениях тензоров напряжений и деформаций, спектральное представление нелинейных тензорных функций для трансверсально-изотропных сред. Предложены конкретные модели функций пластичности, зависящие от спектральных инвариантов тензора деформации. Для определения констант модели предложен метод, в котором эти константы вычисляются на основе аппроксимации кривых деформирования, полученных прямым численным решением трехмерных задач на ячейке периодичности упруго-пластических композитов. Задачи на ячейке периодичности формулируются с помощью метода асимптотического осреднения периодических сред. Численное решение задач на ячейке периодичности осуществляется с помощью конечно-элементного метода в рамках программного обеспечения, разработанного в Научно-образовательном центре «Суперкомпьютерное инженерное моделирование и разработка программных комплексов» МГТУ им. Н.Э. Баумана. приведен пример численного расчета констант модели композита с помощью предложенного метода для однонаправленно-армированного композита на основе углеродных волокон и матрицы из алюминиевого сплава. Приведены примеры верификация предложенной модели для различных траекторий нагружения композита в 6 мерном пространстве напряжений. Показано, что предложенная микроструктурная модель и алгоритм определения ее констант обеспечивают достаточно высокую точность прогнозирования упруго-пластического деформирования трансверсально-изотропных композитов.
Димитриенко Ю.И., Сборщиков С.В., Димитриенко А.Ю., Юрин Ю.В. Микроструктурная модель деформационной теории пластичности трансверсально-изотропных композитов. Математическое моделирование и численные методы, 2022, № 1, с. 15–41.
doi: 10.18698/2309-3684-2022-2-1427
В статье представлено продолжение обзора работ, посвященных исследованиям свойств упругопластических материалов. В первой части были рассмотрены универсальные законы деформирования, содержащие менее четырех формальных параметров. В результате обзора были сформулированы требования к формулировке эмпирических законов деформирования упругопластических материалов. В том числе, был сделан вывод о том, что закон деформирования должен быть, как минимум четырех-параметрическим. Во второй части данной статьи рассмотрены и проанализированы эмпирические законы деформирования, содержащие четыре и более параметров. Сравнение рассмотренных эмпирических кривых с выборкой экспериментальных точек осуществляется стандартной процедурой минимизации суммарного квадратичного отклонения и использованием метода градиентного спуска для определения минимума функции многих переменных. Для оценки предсказательной силы моделей на соответствие эксперименту, использована представительная выборка из 158 экспериментальных точек кривой деформирования российского титанового сплава ВТ6. Универсальные эмпирические законы деформирования, содержащие четыре формальных параметра, позволяют описать кривую деформирования с заданными на концах кривой напряжением и касательным модулем. Этот факт позволяет утверждать, что упругопластические свойства материалов могут быть выражены через геометрические параметры кривой деформирования. В свою очередь связь между упругопластическими свойствами материала и геометрией кривой деформирования, можно трактовать, как принцип «геометризации» упругопластических свойств материалов.
Головина Н.Я., Белов П.А. Анализ эмпирических моделей кривых деформирования упругопластических материалов (обзор). Часть 2. Математическое моделирование и численные методы, 2022, № 2, с. 16–29
doi: 10.18698/2309-3684-2024-3-1842
Рассмотрена проблема разработки универсального критерия длительной усталостной прочности изотропных материалов, у которых накопление повреждений существенно отличается при нагружении в области растяжения и сжатия. Обычно для моделирования долговечности таких материалов применяют диаграммы Гудмана, в которых учитывается зависимость долговечности от коэффициента асимметрии нагружения. Однако, эта модель, как правило содержит только одну так называемую S-N кривую, в следствие чего кривые усталостной долговесности при разных коэффициентах асимметрии оказываются самоподобными, что далеко не всегда наблюдается в экспериментальных данных. Кроме того, диаграммы Гудмана применимы только для циклических нагружений. В данной статье предложено дальнейшее развитие «химического» критерия, который был разработах ранее в авторских работах, и который применим для широкого спектра нагрузок, как длительных статических, так и циклических с произвольной формой цикла нагружения. Развитие «химического» критерия усталостной прочности осуществлено за счет раздельного учета накоплений повреждений в области растяжения и сжатия. Для смешанных режимов нагружения в области растяжения-сжатия происходит суммирование особым образом накопления повреждений на участках растяжения и сжатия. Разработана методика определения констант предложенной модели усталостной долговечности. Показано, как строятся диаграммы Гудмана для разработанного варианта критерия усталостной долговечности. Рассмотен пример применения «химического» критерия для моделирования усталостной долговечности стали 34СrNiMo6.
Димитриенко Ю.И., Димитриенко А.Ю. «Химический» критерий для моделирования усталостной долговечности материалов, разносопротивляющихся растяжению-сжатию. Математическое моделирование и численные методы, 2024, № 3, с. 18–42.