539.3 Асимптотическая теория конструктивно-ортотропных пластин с двухпериодической структурой
doi: 10.18698/2309-3684-2014-1-3656
Предложена теория тонких конструктивно-ортотропных пластин, обладающих двухпериодической структурой, примером которых являются сотовые многослойные панели и подкрепленные пластины. Теория построена на основе уравнений об-щей трехмерной теории упругости путем с помощью асимптотических разложений по малому параметру, представляющему отношение толщины пластины к характерной длине, без введения каких-либо гипотез относительно характера распределения перемещений и напряжений по толщине. Сформулированы локальные задачи для нахождения напряжений во всех конструктивных элементах пластины. Показано, что полученные глобальные (осредненные по определенным правилам) уравнения теории пластин близки к уравнениям теории пластин Кирхгофа – Лява, но отличаются от них наличием третьего порядка производных от продольных перемещений. Предложенный метод позволяет вычислить все шесть компонент тензора напряжений, включая поперечные нормальные напряжения и напряжения межслойного сдвига, для этого необходимо численно решить локальные задачи до третьего приближения включительно. Приведен пример конечно-элементного решения локальных задач нулевого приближения для сотовой конструкции, который показал, что разработанный метод расчета пластин и его численная реализация достаточно эффективны, они позволяют проводить расчеты для сложных конструктивно-ортотропных пластин с сильно различающимися значениями упругих характеристик.
Димитриенко Ю. И., Губарева Е. А., Сборщиков С. В. Асимптотическая теория конструктивно-ортотропных пластин с двухпериодической структурой. Математическое моделирование и численные методы, 2014, №1 (1), c. 36-56
doi: 10.18698/2309-3684-2020-1-327
Рассматривается задача построения многоуровневой модели для вычисления упругих свойств полимерных композиционных материалов со сложной структурой армирования при высоких температурах, при которых происходят процессы термодеструкции матрицы и армирующих волокон. Для того, чтобы учесть изменение упругих свойств композита в зависимости от температуры и времени нагрева, предложена 3-х уровневая модель композита. На нижнем уровне этой модели рассматриваются моно-волокна и матрица, состоящие из 4-х фаз, соотношение между которыми меняется при нагреве. На этом уровне используются аналитические соотношения, предложенные ранее в работах Ю.И. Димитриенко. На следующем уровне модели рассмотрен однонаправленный композит, состоящий из пучков моноволокон и матрицы. Для расчета упругих свойств на этом уровне применяется метод асимптотического осреднения, и конечно-элементный алгоритм решения локальных задач теории термоупругости, возникающих в этом методе. На 3-м структурном уровне модели рассмотрены композиты со сложными структурами армирования, в частности тканевые композиты. Для расчета упругих свойств композита на этом уровне также применяется метод асимптотического осреднения. Для численного расчета упругих характеристик полимерных композитов при высоких температурах разработано специализированное программное обеспечение, функционирующее под управлением программного комплекса SMCM, созданного на кафедре «Вычислительная математика и математическая физика» МГТУ им. Н.Э. Баумана и в научно-образовательном центре «Суперкомпьютерное инженерное моделирование и разработка программных комплексов» МГТУ им. Н.Э. Баумана. В статье приведены примеры применения разработанной многоуровневой модели и программного обеспечения для тканевых композитов на основе эпоксидной матрицы и стеклянных волокон. Вычислены значения всех компонент тензора модулей упругости композита, меняющиеся в зависимости от программы нагрева композита. Получены поля микронапряжений в композите. Проведено сравнение полей микронапряжений и эффективных констант упругости при нормальных температурах, с аналогичными значениями, полученными с помощью программного комплекса ANSYS, который был доработан для возможности вычисления эффективных упругих констант в соответствии с предложенной моделью. Получено очень хорошее совпадение результатов расчетов, как эффективных констант, так и полей микронапряжений, что позволяет говорить о высокой точности разработанного программного обеспечения.
Димитриенко Ю.И., Юрин Ю.В., Сборщиков С.В., Богданов И.О., Яхновский А.Д., Баймурзин Р.Р. Конечно-элементное моделирование упругих свойств тканевых полимерных композитов при высоких температурах. Математическое моделирование и численные методы. 2020. № 1. с. 3–27
doi: 10.18698/2309-3684-2014-2-2848
Предложена методика расчета эффективных вязкоупругих характеристик композиционных материалов при установившихся циклических колебаниях, основанная на методе асимптотического осреднения периодических структур и конечно-элементном решении локальных задач вязкоупругости на ячейке периодичности композитов. Приведены примеры численного моделирования вязкоупругих характеристик однонаправленно-армированных композитов и расчетов комплексных тензоров концентрации напряжений в ячейке периодичности. Проведен сравнительный анализ зависимостей тангенса угла потерь комплексных модулей упругости композита от частоты колебаний, полученных с помощью метода конечных элементов и по приближенным смесевым формулам. Показано, то использование приближенных смесевых формул для расчета вязкоупругих характеристик, которые часто применяют для оценки диссипативных характеристик композитов, может давать существенную погрешность в расчетах.
Димитриенко Ю. И., Губарева Е. А., Сборщиков С. В. Конечно-элементное моделирование эффективных вязкоупругих свойств однонаправленных композиционных материалов. Математическое моделирование и численные методы, 2014, №2 (2), c. 28-48
doi: 10.18698/2309-3684-2021-4-1744
Предложена модель определяющих соотношений упруго-пластических композитов, обладающих кубической симметрией свойств. К этому классу относится значительно число композиционных материалов: дисперсно-армированные композиты, у которых имеется упорядоченная, а не хаотическая система армирования, а также некоторые типы пространственно-армированных композитов. Для построения модели нелинейных определяющих соотношений использован тензорно-симметрийный подход, основанный на спектральных разложениях тензоров напряжений и деформаций, а также спектральном представлении нелинейных тензорных соотношений между этими тензорами. Рассмотрена деформационная теория пластичности, для которой использован тензорно-симметрийный подход, а также предложены конкретные модели для функций пластичности, зависящих от спектральных инвариантов тензора деформации. Для определения констант модели предложен метод, в котором эти константы вычисляются на основе аппроксимации кривых деформирования, полученных прямым численным решением трехмерных задач на ячейке периодичности упруго-пластических композитов. Эти задачи возникают в методе асимптотического осреднения периодических сред. Для решения задач на ячейке периодичности использован конечно-элементный метод и специальное программное обеспечение, реализующее решения задач на ячейках периодичности, разработанное в Научно-образовательном центре «Суперкомпьютерное инженерное моделирование и разработка программных комплексов» МГТУ им. Н.Э. Баумана. Рассмотрен пример расчета констант модели композита с помощью предложенного метода для дисперсно-армированного композита на основе металлической матрицы. А также проведена верификация предложенной модели для различных путей многоосного нагружения композита при прямом численном моделировании. Показано, что предложенная микроструктурная модель и алгоритм определения ее констант обеспечивают достаточно высокую точность прогнозирования упруго-пластического деформирования композита.
Димитриенко Ю.И., Сборщиков С.В., Димитриенко А.Ю., Юрин Ю.В. Микроструктурная модель деформационной теории пластичности квази-изотропных композиционных материалов. Математическое моделирование и численные методы, 2021, № 4, с. 17–44.
doi: 10.18698/2309-3684-2022-1-1541
В рамках деформационной теории пластичности при активном нагружении предложена модель определяющих соотношений упруго-пластических композитов, относящихся к классу трансверсально-изотропных материалов. Для построения нелинейных определяющих соотношений использована теория спектральных разложениях тензоров напряжений и деформаций, спектральное представление нелинейных тензорных функций для трансверсально-изотропных сред. Предложены конкретные модели функций пластичности, зависящие от спектральных инвариантов тензора деформации. Для определения констант модели предложен метод, в котором эти константы вычисляются на основе аппроксимации кривых деформирования, полученных прямым численным решением трехмерных задач на ячейке периодичности упруго-пластических композитов. Задачи на ячейке периодичности формулируются с помощью метода асимптотического осреднения периодических сред. Численное решение задач на ячейке периодичности осуществляется с помощью конечно-элементного метода в рамках программного обеспечения, разработанного в Научно-образовательном центре «Суперкомпьютерное инженерное моделирование и разработка программных комплексов» МГТУ им. Н.Э. Баумана. приведен пример численного расчета констант модели композита с помощью предложенного метода для однонаправленно-армированного композита на основе углеродных волокон и матрицы из алюминиевого сплава. Приведены примеры верификация предложенной модели для различных траекторий нагружения композита в 6 мерном пространстве напряжений. Показано, что предложенная микроструктурная модель и алгоритм определения ее констант обеспечивают достаточно высокую точность прогнозирования упруго-пластического деформирования трансверсально-изотропных композитов.
Димитриенко Ю.И., Сборщиков С.В., Димитриенко А.Ю., Юрин Ю.В. Микроструктурная модель деформационной теории пластичности трансверсально-изотропных композитов. Математическое моделирование и численные методы, 2022, № 1, с. 15–41.
539.3+519.86 Многомасштабное моделирование упругопластических композитов с учетом повреждаемости
doi: 10.18698/2309-3684-2016-2-323
Предложена модель деформирования упругопластических композиционных материалов периодической структуры с учетом повреждаемости фаз композита, основанная на варианте деформационной теории пластичности при активном нагружении. Для моделирования эффективных характеристик упругопластических композитов применен метод асимптотической гомогенизации периодических структур. Для численного решения локальных задач упругопластичности с учетом повреждаемости на ячейке периодичности предложен вариант итерационного метода линеаризации, а для численного решения линеаризованных задач на ячейке периодичности — метод конечных элементов с использованием программной среды SMCM, разработанной в Научно-образовательном центре «Суперкомпьютерное инженерное моделирование и разработка программных комплексов» (СИМПЛЕКС) МГТУ им. Н.Э. Баумана. Приведены примеры численных расчетов для дисперсно-армированного металлокомпозита (алюминиевой матрицы, наполненной частицами SiC). Представлены результаты численного моделирования процессов деформирования, накопления повреждений и разрушения металлокомпозита.
Димитриенко Ю. И., Губарева Е. А., Сборщиков С. В. Многомасштабное моделирование упругопластических композитов с учетом повреждаемости. Математическое моделирование и численные методы, 2016, №2 (10), c. 3-23
doi: 10.18698/2309-3684-2015-2-322
Предложена модель микроструктуры двухфазных монокристаллических интерметаллидных сплавов в виде периодической структуры гексагонального типа, а также математическая модель упругопластического деформирования монокристаллического сплава, основанная на методе асимптотической гомогенизации периодических структур. Для фаз используется деформационная теория пластично-сти при активном нагружении с учетом эффекта их повреждаемости. Для численных расчетов по разработанной модели использован жаропрочный моно-кристаллический сплав ВКНА-1В. Проведены конечно-элементные расчеты микромеханических процессов деформирования и разрушения монокристаллического сплава ВКНА-1В. Установлено, что при растяжении максимальные значения параметра повреждаемости фаз, определяющего зону начала микроразрушения сплава, достигаются в зонах, прилегающих к поверхностям раздела фаз и в местах максимального искривления геометрической формы фаз. Проведены расчеты диаграмм деформирования жаропрочных сплавов в области пластичности, которые показали достаточно хорошее совпадение с экспериментальными данными.
Димитриенко Ю. И., Губарева Е. А., Сборщиков С. В., Базылева О. А., Луценко А. Н., Орешко Е. И. Моделирование упругопластических характеристик монокристаллических интерметаллидных сплавов на основе микроструктурного численного анализа. Математическое моделирование и численные методы, 2015, №2 (6), c. 3-22
539.3 Моделирование эффективных упруго-пластических свойств композитов при циклическом нагружении
doi: 10.18698/2309-3684-2020-4-326
Предложена методика расчета эффективных упруго-пластических свойств композитов при циклическом нагружении. Методика основана на применении метода асимптотического осреднения периодических структур для случая материалов с упруго-пластическими свойствами при циклическом нагружении. Рассмотрена модель деформационной теории пластичности А.А. Ильюшина – В.В. Москвитина при циклических нагружениях c использованием модели Мазинга для изменения функции пластичности при циклическом деформировании. Сформулированы локальные задачи теории пластичности для ячейки периодичности композиционного материала, а также осредненные задачи теории анизотропной пластичности при циклическом нагружении. Разработан программный модуль для конечно-элементного решения локальных задач на ячейке периодичности. Использовано программное обеспечение комплекса SMCM, разработанного в Научно-образовательном центре «Суперкомпьютерное инженерное моделирование и раз-работка программных комплексов» (НОЦ «Симплекс») МГТУ им. Н.Э. Баумана. Комплекс SMCM предназначен для конечно-элементного моделирования свойств композиционных материалов. Проведены численные расчеты упруго–пластических свойств дисперсно–армированных композитов на основе алюминиевого сплава и керамических частиц SiC. Расчеты показали, что разработанная методика может быть использована для прогнозирования циклических диаграмм деформирования упруго–пластических композитов в широком диапазоне условий нагружения, а также для проектирования новых композиционных материалов с заданными свойствами.
Димитриенко Ю.И., Сборщиков С.В., Юрин Ю.В. Моделирование эффектив-ных упруго–пластических свойств композитов при циклическом нагружении. Ма-тематическое моделирование и численные методы, 2020, № 4, с. 3–26.
doi: 10.18698/2309-3684-2020-3-2246
Рассмотрена задача о расчете интегральных характеристик вязкоупругости композиционных материалов, исходя из информации об аналогичных характеристиках компонентов композита и его микроструктуры. Предложен алгоритм для прогнозирования эффективных ядер релаксации и ползучести композитов с произвольной микроструктурой армирования. Алгоритм основан на использовании преобразования Фурье и обратного преобразования Фурье, а также метода асимптотического осреднения для композитов при установившихся полигармонических колебаниях. В алгоритме используются экспоненциальные ядра релаксации и ползучести для исходных компонентов композита. Основой вычислительной процедуры предложенного алгоритма является конечно-элементное решение локальных задач вязкоупру-гости на ячейке периодичности композита. Результатом применения алгоритма является определение параметров экспоненциальных ядер релаксации и ползучести композиционных материалов, что позволяет получить решение задачи в полностью замкнутом виде. В качестве примера проведено численное моделирование вязкоупругих характеристик однонаправленно-армированных композитов на основе углеродных волокон и эпоксидной матрицы. Показано, что разработанный алгоритм позволяет получать эффективные ядра релаксации и ползучести композита с высокой точностью, без осцилляций, которые, как правило, сопровождают, методы обращения преобразований Фурье.
Димитриенко Ю.И., Юрин Ю.В., Сборщиков С.В., Яхновский А.Д., Баймурзин Р.Р. Моделирование эффективных ядер релаксации и ползучести вязко-упругих композитов методом асимптотического осреднения. Математическое моделирование и численные методы, 2020, № 3, с. 22–46.
doi: 10.18698/2309-3684-2021-3-4261
Рассматривается сопряженная задача высокоскоростной аэротермодинамики и внутреннего тепломассопереноса в теплозащитных конструкциях возвращаемых космических аппаратов из аблирующих полимерных композиционных материалов. Для определения тепловых потоков в ударном слое возвращаемого аппарата учитывается химический состав атмосферы. Сформулирована математическая постановка сопряженной задачи и предложен алгоритм численного решения. Представлен пример численного решения задачи для возвращаемого космического аппарата Stardust. Показано, что учет химических реакций в потоке газа, обтекающем поверхность возвращаемого аппарата, является существенным для корректного определения температуры газа в пограничном слое. Показано также, что разработанная численная методика решения задачи позволяет определять параметры фазовых превращений в теплозащитной конструкции в зависимости от времени нагрева, в частности позволяет рассчитывать поле порового давления газообразных продуктов терморазложения полимерного композита, которое при определенных условиях может привести к разрушению материала.
Димитриенко Ю.И., Коряков М.Н., Юрин Ю.В., Захаров А.А., Сборщиков С.В., Богданов И.О. Сопряженное моделирование высокоскоростной аэротермодинамики и внутреннего тепломассопереноса в композитных аэрокосмических конструкциях. Математическое моделирование и численные методы, 2021, № 3, с. 42–61.
doi: 10.18698/2309-3684-2015-1-6782
Предложена методика численного конечно-элементного решения задачи овализации, которую используют при экспериментальной отработке новых материалов для авиационной промышленности, в целях определения сопротивления деформированию элементов конструкций с наличием концентраторов напряжений, главным образом, соединительных элементов. Методика основана на трехмерном конечно-элементном решении задачи упругопластического деформирования пластин с отверстием при смятии и предназначена для сокращения экспериментальных исследований путей замены их на численные эксперименты. Используется модель малых упругопластических деформаций Ильюшина. Представлены результаты численного моделирования трехмерного напряженно-деформированного состояния упругопластических пластин при смятии, а также результаты экспериментальных исследований деформирования пластин из алюминиевого сплава 163. Показано, что результаты численного и экспериментального моделирования деформирования пластин при смятии достаточно хорошо совпадают.
Димитриенко Ю. И., Губарева Е. А., Сборщиков С. В., Ерасов В. С., Яковлев Н. О. Численное моделирование и экпериментальное исследование деформирования упругопластических пластин при смятии. Математическое моделирование и численные методы, 2015, №1 (5), c. 67-82