Рубрика: "01.02.00 Механика"



539.3 Численное моделирование и экпериментальное исследование деформирования упругопластических пластин при смятии

Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Губарева Е. А. (МГТУ им.Н.Э.Баумана), Сборщиков С. В. (МГТУ им.Н.Э.Баумана), Ерасов В. С. (ФГУП «ВИАМ» ГНЦ РФ), Яковлев Н. О. (ФГУП «ВИАМ» ГНЦ РФ)


doi: 10.18698/2309-3684-2015-1-6782


Предложена методика численного конечно-элементного решения задачи овализации, которую используют при экспериментальной отработке новых материалов для авиационной промышленности, в целях определения сопротивления деформированию элементов конструкций с наличием концентраторов напряжений, главным образом, соединительных элементов. Методика основана на трехмерном конечно-элементном решении задачи упругопластического деформирования пластин с отверстием при смятии и предназначена для сокращения экспериментальных исследований путей замены их на численные эксперименты. Используется модель малых упругопластических деформаций Ильюшина. Представлены результаты численного моделирования трехмерного напряженно-деформированного состояния упругопластических пластин при смятии, а также результаты экспериментальных исследований деформирования пластин из алюминиевого сплава 163. Показано, что результаты численного и экспериментального моделирования деформирования пластин при смятии достаточно хорошо совпадают.


Димитриенко Ю. И., Губарева Е. А., Сборщиков С. В., Ерасов В. С., Яковлев Н. О. Численное моделирование и экпериментальное исследование деформирования упругопластических пластин при смятии. Математическое моделирование и численные методы, 2015, №1 (5), c. 67-82



539.3 Моделирование крутильных колебаний вязкоупругого круглого стержня, вращающегося с постоянной угловой скоростью

Абдирашидов А. (СамГУ)


doi: 10.18698/2309-3684-2016-1-3851


Выведены общие и приближенные уравнения крутильных колебаний круглого вязкоупругого стержня, вращающегося с постоянной угловой скоростью вокруг оси симметрии. Разработан алгоритм, позволяющий определить напряженно-деформированное состояние этого стержня. На основе полученных приближенных уравнений колебаний численно решена задача о его крутильных колебаниях. Проведен сопоставительный анализ результатов, полученных для экспоненциального
и слабосингулярного ядер оператора вязкоупругости. Даны оценки влияния вращения на колебания стержня.


Худойназаров Х. Х., Абдирашидов А. ., Буркутбоев Ш. М. Моделирование крутильных колебаний вязкоупругого круглого стержня, вращающегося с постоянной угловой скоростью. Математическое моделирование и численные методы, 2016, №1 (9), c. 38-51



629.1.028 Проверка адекватности математической модели движения многоосной колесной машины с податливой на кручение несущей системой методами экспериментальных исследований

Жилейкин М. М. (МГТУ им.Н.Э.Баумана), Сарач Е. Б. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2015-4-6674


В рамках решения задачи активного управления упругими и демпфирующими элементами подвесок многоосных колесных машин (МКМ) остро стоит задача исследования свойств семейств подвесок, спроектированных как для различных ходов, так и для различных нагрузок. Методами экспериментальных исследований проведена проверка адекватности математической модели движения МКМ с учетом податливости несущей системы на кручение. Проведенное сравнение расчетных и экспериментальных данных показывает хорошую сходимость результатов.


Жилейкин М. М., Сарач Е. Б. Проверка адекватности математической модели движения многоосной колесной машины с податливой на кручение несущей системой методами экспериментальных исследований. Математическое моделирование и численные методы, 2015, №4 (8), c. 66-74



539.3+519.86 Многомасштабное моделирование упругопластических композитов с учетом повреждаемости

Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Губарева Е. А. (МГТУ им.Н.Э.Баумана), Сборщиков С. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2016-2-323


Предложена модель деформирования упругопластических композиционных материалов периодической структуры с учетом повреждаемости фаз композита, основанная на варианте деформационной теории пластичности при активном нагружении. Для моделирования эффективных характеристик упругопластических композитов применен метод асимптотической гомогенизации периодических структур. Для численного решения локальных задач упругопластичности с учетом повреждаемости на ячейке периодичности предложен вариант итерационного метода линеаризации, а для численного решения линеаризованных задач на ячейке периодичности — метод конечных элементов с использованием программной среды SMCM, разработанной в Научно-образовательном центре «Суперкомпьютерное инженерное моделирование и разработка программных комплексов» (СИМПЛЕКС) МГТУ им. Н.Э. Баумана. Приведены примеры численных расчетов для дисперсно-армированного металлокомпозита (алюминиевой матрицы, наполненной частицами SiC). Представлены результаты численного моделирования процессов деформирования, накопления повреждений и разрушения металлокомпозита.


Димитриенко Ю. И., Губарева Е. А., Сборщиков С. В. Многомасштабное моделирование упругопластических композитов с учетом повреждаемости. Математическое моделирование и численные методы, 2016, №2 (10), c. 3-23



539.3 Асимптотическая теория термоползучести многослойных тонких пластин

Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Губарева Е. А. (МГТУ им.Н.Э.Баумана), Юрин Ю. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-4-1836


Предложена теория термоползучести многослойных тонких пластин, основанная на анализе общих уравнений трехмерной нелинейной теории термоползучести с помощью построения асимптотических разложений по малому параметру, представляющему отношение толщины пластины к характерной длине, без введения каких-либо гипотез относительно характера распределения перемещений и напряжений по толщине. Сформулированы локальные задачи для нахождения всех шести компонент тензора напряжений во всех слоях пластины, с точным учетом всех граничных условий. Выведены глобальные (осредненные по определенным правилам) уравнения теории термоползучести пластин, показано, что эти уравнения близки по структуре к уравнениям теории пластин Кирхгофа – Лява, но отличаются от них наличием 3-го порядка производных от продольных перемещений. Показано, что предложенная теория позволяет вычислить с наперед заданной точностью все шесть компонент тензора напряжений, включая поперечные нормальные напряжения и напряжения межслойного сдвига, для этого необходимо численно решить только глобальные уравнения теории термоползучести пластин, а остальные вычисления сводятся только к использованию аналитических формул.


Димитриенко Ю. И., Губарева Е. А., Юрин Ю. В. Асимптотическая теория термоползучести многослойных тонких пластин. Математическое моделирование и численные методы, 2014, №4 (4), c. 18-36



539.3 Моделирование динамической устойчивости цилиндрической оболочки при действии осевой сжимающей нагрузки

Дубровин В. М. (МГТУ им.Н.Э.Баумана), Бутина Т. А. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2015-2-4657


Предложен метод расчета динамической устойчивости цилиндрической оболочки при нагружении осевой сжимающей нагрузкой, изменяющейся во времени. В каче-стве примера рассмотрен случай, когда нагрузка меняется по линейному закону


Дубровин В. М., Бутина Т. А. Моделирование динамической устойчивости цилиндрической оболочки при действии осевой сжимающей нагрузки. Математическое моделирование и численные методы, 2015, №2 (6), c. 46-57



519.63:532.5 Численно-аналитический метод решения двумерных задач естественной конвекции в замкнутых полостях

Басараб М. А. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-1-1835


Предложен метод численно-аналитического решения системы уравнений в частных производных, описывающих естественную тепловую конвекцию в двумерной полости сложной формы с произвольными граничными условиями (метод PGRM). Новый подход основан на комбинации методов Петрова – Галеркина и R-функций (функций Рвачева) и дает возможность получить априори удовлетворяющие граничным условиям представления функций температуры, вихря и тока в виде разложений по некоторым базисам. Согласованный выбор базисов позволяет естественным образом аппроксимировать краевые условия для функции тока. Нестационарные задачи конвекции решаются путем совместного использования PGRM и метода прямых (метод Роте).


Басараб М. А. Численно-аналитический метод решения двумерных задач естественной конвекции в замкнутых полостях. Математическое моделирование и численные методы, 2014, №1 (1), c. 18-35



539.3 Теория пластин, основанная на методе асимптотических разложений

Шешенин С. В. (МГУ им. М.В. Ломоносова), Скопцов К. А. (МГУ им. М.В. Ломоносова)


doi: 10.18698/2309-3684-2014-2-4961


Приведено сравнение результатов асимптотического анализа поперечного изгиба многослойной пластины под воздействием поверхностной нагрузки с классическими теориями тонких и толстых пластин. Слои пластины полагаются составленными из однородных упругих ортотропных материалов.


Шешенин С. В., Скопцов К. А. Теория пластин, основанная на методе асимптотических разложений. Математическое моделирование и численные методы, 2014, №2 (2), c. 49-61



519.248 Сравнение прогрессивно цензурированных выборок – численные методы табулирования распределений статистик однородности и исследование оценки параметров связи их распределений методом Монте-Карло

Тимонин В. И. (МГТУ им.Н.Э.Баумана), Тянникова Н. Д. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2015-3-89100


В работе рассматривается задача оценки функций пересчёта наработок до отказа с одного режима на другой. Данная задача возникает, например, когда имеются данные по наработкам изделий в стендовых испытаниях, и требуется вычислить показатели надежности этих изделий в реальных условиях эксплуатации. Для простоты рассматривается случай, когда наработки до отказа связаны линейным соотношением. Предлагаемый метод основывается на минимизации статистики типа Колмогорова-Смирнова, которая применяется для проверки однородности двух прогрессивно цензурированных выборок. Особенностью предлагаемой статистики является использование оценок Каплана-Мейера функции надежности по каждой выборке. В работе предлагается метод вычисления точных распределений данной статистики при справедливости проверяемой гипотезы, которые в этом случае не зависят от вида функции распределения наработок до отказа элементов. Табулированы значения точных квантилей рассматриваемой статистики. Методами статистического моделирования показана состоятельность предложенной оценки для линейной функции связи.


Тимонин В. И., Тянникова Н. Д. Сравнение прогрессивно цензурированных выборок – численные методы табулирования распределений статистик однородности и исследование оценки параметров связи их распределений методом Монте-Карло. Математическое моделирование и численные методы, 2015, №3 (7), c. 89-100



<< 2 >>