Рубрика: "01.02.00 Механика"



551.5:517 Моделирование стабилизации глобального климата управляемыми выбросами стратосферного аэрозоля

Пархоменко В. П. (МГТУ им.Н.Э.Баумана/ФИЦ ИУ РАН)


doi: 10.18698/2309-3684-2014-2-115126


В течение последних десятилетий наблюдаются изменения климата, выражающиеся в его глобальном потеплении. Эти изменения в основном связывают с антропогенным увеличением количества парниковых газов в атмосфере (главный из них — СО2). В статье рассматривается проблема и возможность стабилизации климата на современном уровне. Исследование ведется на основе сезонной глобальной совместной трехмерной гидродинамической модели климата, включающей модель Мирового океана с реальными глубинами и конфигурацией материков,
модель эволюции морского льда и энерго-влагобалансовую модель атмосферы. На первом этапе проведены расчеты прогнозирования климата до 2100 г. с использованием сценария роста СО2 А2, предложенного IPCC. Они дают увеличение среднегодовой поверхностной температуры атмосферы на 3,5 С. Проведены серии расчетов для оценки возможности стабилизации климата на уровне 2010 г. путем управления выбросами в стратосферу сульфатного аэрозоля, отражающего и рассеивающего часть приходящего солнечного излучения. Вычислены концентрации (альбедо) аэрозоля с 2010 до 2100 г., позволяющие стабилизировать среднегодовую температуру поверхностного слоя атмосферы. Показано, что таким путем невозможно добиться приближения климата к существующему, хотя можно значительно ослабить парниковый эффект. При условии однородного по пространству распределения аэрозоля в стратосфере можно стабилизировать среднюю глобальную температуру атмосферы, но при этом в низких и средних иротах климат будет холоднее на 0,1…0,2 С, а в высоких широтах — теплее на 0,2…1,2 С. Кроме того, эти различия имеют сильно выраженный сезонный ход — в зимний период они увеличиваются. Прекращение выбросов аэрозоля в 2080 г. приведет к быстрому увеличению средней глобальной температуры атмосферы, приближающейся в 2100 г. к значению температуры без аэрозоля.


Пархоменко В. П. Моделирование стабилизации глобального климата управляемыми выбросами стратосферного аэрозоля. Математическое моделирование и численные методы, 2014, №2 (2), c. 115-126



517.1:539.434 Механический аналог, моделирующий процессы неупругого неизотермического деформирования

Зарубин В. С. (МГТУ им.Н.Э.Баумана), Кувыркин Г. Н. (МГТУ им.Н.Э.Баумана), Савельева И. Ю. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-3-2538


Представлен механический аналог, позволяющий на качественном и количественном уровнях описать основные особенности неупругого деформирования конструкционного материала при переменных температурах. Аналог построен с использованием физических представлений о микроструктуре поликристаллических конструкционных материалов и микромеханизме процесса их деформирования в сочетании с известными положениями феноменологических теорий пластичности и ползучести. Применительно к конкретным режимам теплового и механического воздействий на теплонапряженную конструкцию такой подход позволяет выбрать рациональный вариант модели конструкционного материала, достаточно полно описывающий наиболее существенные эффекты, характерные для процесса неупругого неизотермического деформирования. Разработан один из вариантов такой модели при одноосном нагружении материала и приведен пример подбора числовых значений ее параметров.


Зарубин В. С., Кувыркин Г. Н., Савельева И. Ю. Механический аналог, моделирующий процессы неупругого неизотермического деформирования. Математическое моделирование и численные методы, 2014, №3 (3), c. 25-38



533.6.011.5 Модификация метода Польгаузена для расчета тепловых потоков на затупленных телах

Котенев В. П. (МГТУ им.Н.Э.Баумана), Булгаков В. Н. (МГТУ им.Н.Э.Баумана), Ожгибисова Ю. С. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2016-3-3352


Разработана модификация метода Польгаузена, позволяющая быстро и эффективно получить распределение теплового потока по поверхности затупленных тел. Проведены расчеты, их результаты приведены в сравнении с численным решением задачи в рамках уравнений Навье — Стокса.


Котенев В. П., Булгаков В. Н., Ожгибисова Ю. С. Модификация метода Польгаузена для расчета тепловых потоков на затупленных телах. Математическое моделирование и численные методы, 2016, №3 (11), c. 33-52



539.3 Численное моделирование деформирования и прочности трехслойных композитных конструкций с дефектами

Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Юрин Ю. В. (МГТУ им.Н.Э.Баумана), Федонюк Н. Н. (ФГУП «Крыловский государственный научный центр»)


doi: 10.18698/2309-3684-2016-3-323


Разработана многоуровневая модель для многомасштабного деформирования трехслойных (сэндвичевых) конструкций из полимерных композиционных материалов типа пластин с заполнителем на основе пенопласта, учитывающая микромеханические процессы деформирования и повреждаемости матрицы, армирующего наполнителя и пенопласта, а также макроскопические дефекты типа непропитки композитных обшивок. Проведено конечно-элементное моделирование напряженно-деформированного состояния, повреждаемости и разрушения трехслойных пластин с обшивками из гибридных композитов из углепластика, с различными размерами дефекта типа непропитки, при изгибе равномерным давлением. Установлены особенности процесса деформирования и повреждаемости данного типа композитных конструкций. Разработанная методика может быть применена для расчета деформирования, повреждаемости и разрушения трехслойных пластин из полимерных композиционных материалов, применяемых в различных отраслях промышленности: судостроении, авиастроении, ракетостроении.


Димитриенко Ю. И., Юрин Ю. В., Федонюк Н. Н. Численное моделирование деформирования и прочности трехслойных композитных конструкций с дефектами. Математическое моделирование и численные методы, 2016, №3 (11), c. 3-23



539.3 Моделирование вязкоупругости полиуретана при умеренно высоких скоростях деформирования

Белкин А. Е. (МГТУ им.Н.Э.Баумана), Даштиев И. З. (ЦНИИСМ), Лонкин Б. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-3-3954


Представлена математическая модель вязкоупругого поведения полиуретана СКУ-ПФЛ-100 для диапазона деформаций 0...30 % и умеренно высоких скоростей деформирования, не превышающих значения 10−1. Для определения вязкой составляющей деформации применена реологическая модель Бергстрема – Бойс. Связь напряжения с упругой составляющей деформации описана с помощью потенциала Арруды – Бойс. Для определения параметров модели использовались экспериментальные диаграммы сжатия полиуретана, полученные на машине Instron Electropuls 1000 при различных скоростях деформирования. Приведены значения параметров модели, найденные путем минимизации функции отклонений расчетных величин от результатов эксперимента. Показано, что в рассмотренном диапазоне деформаций и их скоростей модель позволяет описать поведение полиуретана с достаточной для практических целей точностью. Модель предназначена для расчета полиуретановых деталей амортизаторов, поглощающих аппаратов, буферов и других конструкций, испытывающих динамические нагрузки.


Белкин А. Е., Даштиев И. З., Лонкин Б. В. Моделирование вязкоупругости полиуретана при умеренно высоких скоростях деформирования. Математическое моделирование и численные методы, 2014, №3 (3), c. 39-54



539.3 Моделирование упругопластических характеристик монокристаллических интерметаллидных сплавов на основе микроструктурного численного анализа

Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Губарева Е. А. (МГТУ им.Н.Э.Баумана), Сборщиков С. В. (МГТУ им.Н.Э.Баумана), Базылева О. А. (ФГУП «ВИАМ» ГНЦ РФ), Луценко А. Н. (ФГУП «ВИАМ» ГНЦ РФ), Орешко Е. И. (ФГУП «ВИАМ» ГНЦ РФ)


doi: 10.18698/2309-3684-2015-2-322


Предложена модель микроструктуры двухфазных монокристаллических интерметаллидных сплавов в виде периодической структуры гексагонального типа, а также математическая модель упругопластического деформирования монокристаллического сплава, основанная на методе асимптотической гомогенизации периодических структур. Для фаз используется деформационная теория пластично-сти при активном нагружении с учетом эффекта их повреждаемости. Для численных расчетов по разработанной модели использован жаропрочный моно-кристаллический сплав ВКНА-1В. Проведены конечно-элементные расчеты микромеханических процессов деформирования и разрушения монокристаллического сплава ВКНА-1В. Установлено, что при растяжении максимальные значения параметра повреждаемости фаз, определяющего зону начала микроразрушения сплава, достигаются в зонах, прилегающих к поверхностям раздела фаз и в местах максимального искривления геометрической формы фаз. Проведены расчеты диаграмм деформирования жаропрочных сплавов в области пластичности, которые показали достаточно хорошее совпадение с экспериментальными данными.


Димитриенко Ю. И., Губарева Е. А., Сборщиков С. В., Базылева О. А., Луценко А. Н., Орешко Е. И. Моделирование упругопластических характеристик монокристаллических интерметаллидных сплавов на основе микроструктурного численного анализа. Математическое моделирование и численные методы, 2015, №2 (6), c. 3-22



539.3 Многомасштабное моделирование многослойных тонких композитных пластин с уединенными дефектами

Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Юрин Ю. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2016-4-4766


Разработана многомасштабная модель деформирования многослойных тонких пластин из композиционных материалов с уединенными дефектами. Модель основана на асимптотическом анализе общих трехмерных уравнений механики деформируемого твердого тела. Общее решение трехмерных уравнений сведено к решению задач для тонких пластин без дефектов и локальных трехмерных задач в окрестности дефекта с условием затухания решения на удалении от дефекта. Для расчета многослойных пластин использованы локальные задачи, которые позволяют найти явное решение для всех шести компонент тензора напряжений, в области без дефекта. В зоне дефекта напряжения и перемещения представляет собой суперпозицию двух решений: полученного на основе двумерного расчета пластин и локальной трехмерной задачи механики. Приведен пример численного конечно элементного решения локальной задачи механики для трехслойной композитной пластины с уединенным дефектом в среднем слое. Показано, что влияние дефекта локализовано в непосредственной его окрестности, а максимум концентрации трансверсальных напряжений достигается в окрестности вершины дефекта.


Димитриенко Ю. И., Юрин Ю. В. Многомасштабное моделирование многослойных тонких композитных пластин с уединенными дефектами. Математическое моделирование и численные методы, 2016, №4 (12), c. 47-66



629.1.028 Проверка адекватности математической модели движения многоосной колесной машины с податливой на кручение несущей системой методами экспериментальных исследований

Жилейкин М. М. (МГТУ им.Н.Э.Баумана), Сарач Е. Б. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2015-4-6674


В рамках решения задачи активного управления упругими и демпфирующими элементами подвесок многоосных колесных машин (МКМ) остро стоит задача исследования свойств семейств подвесок, спроектированных как для различных ходов, так и для различных нагрузок. Методами экспериментальных исследований проведена проверка адекватности математической модели движения МКМ с учетом податливости несущей системы на кручение. Проведенное сравнение расчетных и экспериментальных данных показывает хорошую сходимость результатов.


Жилейкин М. М., Сарач Е. Б. Проверка адекватности математической модели движения многоосной колесной машины с податливой на кручение несущей системой методами экспериментальных исследований. Математическое моделирование и численные методы, 2015, №4 (8), c. 66-74



539.3 Теория пластин, основанная на методе асимптотических разложений

Шешенин С. В. (МГУ им. М.В. Ломоносова), Скопцов К. А. (МГУ им. М.В. Ломоносова)


doi: 10.18698/2309-3684-2014-2-4961


Приведено сравнение результатов асимптотического анализа поперечного изгиба многослойной пластины под воздействием поверхностной нагрузки с классическими теориями тонких и толстых пластин. Слои пластины полагаются составленными из однородных упругих ортотропных материалов.


Шешенин С. В., Скопцов К. А. Теория пластин, основанная на методе асимптотических разложений. Математическое моделирование и численные методы, 2014, №2 (2), c. 49-61



<< 2 >>