Рубрика: "01.02.00 Механика"



629.1.028 Проверка адекватности математической модели движения многоосной колесной машины с податливой на кручение несущей системой методами экспериментальных исследований

Жилейкин М. М. (МГТУ им.Н.Э.Баумана), Сарач Е. Б. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2015-4-6674


В рамках решения задачи активного управления упругими и демпфирующими элементами подвесок многоосных колесных машин (МКМ) остро стоит задача исследования свойств семейств подвесок, спроектированных как для различных ходов, так и для различных нагрузок. Методами экспериментальных исследований проведена проверка адекватности математической модели движения МКМ с учетом податливости несущей системы на кручение. Проведенное сравнение расчетных и экспериментальных данных показывает хорошую сходимость результатов.


Жилейкин М. М., Сарач Е. Б. Проверка адекватности математической модели движения многоосной колесной машины с податливой на кручение несущей системой методами экспериментальных исследований. Математическое моделирование и численные методы, 2015, №4 (8), c. 66-74



536.2 Эффективная теплопроводность композита в случае отклонений формы включений от шаровой

Зарубин В. С. (МГТУ им.Н.Э.Баумана), Кувыркин Г. Н. (МГТУ им.Н.Э.Баумана), Савельева И. Ю. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-4-317


На основе математической модели теплового взаимодействия включения и матрицы выполнена оценка влияния отклонения формы включений от шаровой на эффективный коэффициент теплопроводности композита и связанное с таким отклонением возможное возникновение анизотропии композита по отношению к свойству теплопроводности. С использованием двойственной вариационной формулировки стационарной задачи теплопроводности в неоднородном теле построены двусторонние оценки эффективных коэффициентов теплопроводности.


Зарубин В. С., Кувыркин Г. Н., Савельева И. Ю. Эффективная теплопроводность композита в случае отклонений формы включений от шаровой. Математическое моделирование и численные методы, 2014, №4 (4), c. 3-17



517.1:539.434 Механический аналог, моделирующий процессы неупругого неизотермического деформирования

Зарубин В. С. (МГТУ им.Н.Э.Баумана), Кувыркин Г. Н. (МГТУ им.Н.Э.Баумана), Савельева И. Ю. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-3-2538


Представлен механический аналог, позволяющий на качественном и количественном уровнях описать основные особенности неупругого деформирования конструкционного материала при переменных температурах. Аналог построен с использованием физических представлений о микроструктуре поликристаллических конструкционных материалов и микромеханизме процесса их деформирования в сочетании с известными положениями феноменологических теорий пластичности и ползучести. Применительно к конкретным режимам теплового и механического воздействий на теплонапряженную конструкцию такой подход позволяет выбрать рациональный вариант модели конструкционного материала, достаточно полно описывающий наиболее существенные эффекты, характерные для процесса неупругого неизотермического деформирования. Разработан один из вариантов такой модели при одноосном нагружении материала и приведен пример подбора числовых значений ее параметров.


Зарубин В. С., Кувыркин Г. Н., Савельева И. Ю. Механический аналог, моделирующий процессы неупругого неизотермического деформирования. Математическое моделирование и численные методы, 2014, №3 (3), c. 25-38



519.248 Сравнение прогрессивно цензурированных выборок – численные методы табулирования распределений статистик однородности и исследование оценки параметров связи их распределений методом Монте-Карло

Тимонин В. И. (МГТУ им.Н.Э.Баумана), Тянникова Н. Д. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2015-3-89100


В работе рассматривается задача оценки функций пересчёта наработок до отказа с одного режима на другой. Данная задача возникает, например, когда имеются данные по наработкам изделий в стендовых испытаниях, и требуется вычислить показатели надежности этих изделий в реальных условиях эксплуатации. Для простоты рассматривается случай, когда наработки до отказа связаны линейным соотношением. Предлагаемый метод основывается на минимизации статистики типа Колмогорова-Смирнова, которая применяется для проверки однородности двух прогрессивно цензурированных выборок. Особенностью предлагаемой статистики является использование оценок Каплана-Мейера функции надежности по каждой выборке. В работе предлагается метод вычисления точных распределений данной статистики при справедливости проверяемой гипотезы, которые в этом случае не зависят от вида функции распределения наработок до отказа элементов. Табулированы значения точных квантилей рассматриваемой статистики. Методами статистического моделирования показана состоятельность предложенной оценки для линейной функции связи.


Тимонин В. И., Тянникова Н. Д. Сравнение прогрессивно цензурированных выборок – численные методы табулирования распределений статистик однородности и исследование оценки параметров связи их распределений методом Монте-Карло. Математическое моделирование и численные методы, 2015, №3 (7), c. 89-100



537.8+519.63 Моделирование электромагнитных эффектов в сложных конструкциях при воздействии импульсных излучений

Березин А. В. (Институт прикладной математики им. М.В. Келдыша РАН), Жуков Д. А., Жуковский М. Е. (Институт прикладной математики им. М.В. Келдыша РАН), Конюков В. В., Крайнюков В. И., Марков М. Б. (Институт прикладной математики им. М.В. Келдыша РАН), Помазан Ю. В. (Cекция прикладных проблем при Президиуме), Потапенко А. И. (12-й Центральный научно-исследовательский институт МО РФ)


doi: 10.18698/2309-3684-2015-2-5872


Представлена математическая модель переноса фотонов и генерации ими вто-ричных электромагнитных полей в конструкции сложной геометрической формы и упаковки. Приведен эскизный чертеж модельной конструкции изделия. Пред-ставлены результаты расчетов потока фотонов в различных элементах конст-рукции модельного изделия. Показано, что пакет материалов корпуса изделия может резко ослаблять поток фотонов, рассеивая не только мягкие, но и жест-кие кванты, причем интенсивность поглощения имеет ярко выраженные макси-мумы. В газовой среде внутри изделия образуется объемный заряд и электроста-тическое поле. При этом в малой пространственной области внутри корпуса изделия электрическое поле может достигать большой амплитуды


Березин А. В., Жуков Д. А., Жуковский М. Е., Конюков В. В., Крайнюков В. И., Марков М. Б., Помазан Ю. В., Потапенко А. И. Моделирование электромагнитных эффектов в сложных конструкциях при воздействии импульсных излучений. Математическое моделирование и численные методы, 2015, №2 (6), c. 58-72



539.3 Многомасштабное моделирование многослойных тонких композитных пластин с уединенными дефектами

Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Юрин Ю. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2016-4-4766


Разработана многомасштабная модель деформирования многослойных тонких пластин из композиционных материалов с уединенными дефектами. Модель основана на асимптотическом анализе общих трехмерных уравнений механики деформируемого твердого тела. Общее решение трехмерных уравнений сведено к решению задач для тонких пластин без дефектов и локальных трехмерных задач в окрестности дефекта с условием затухания решения на удалении от дефекта. Для расчета многослойных пластин использованы локальные задачи, которые позволяют найти явное решение для всех шести компонент тензора напряжений, в области без дефекта. В зоне дефекта напряжения и перемещения представляет собой суперпозицию двух решений: полученного на основе двумерного расчета пластин и локальной трехмерной задачи механики. Приведен пример численного конечно элементного решения локальной задачи механики для трехслойной композитной пластины с уединенным дефектом в среднем слое. Показано, что влияние дефекта локализовано в непосредственной его окрестности, а максимум концентрации трансверсальных напряжений достигается в окрестности вершины дефекта.


Димитриенко Ю. И., Юрин Ю. В. Многомасштабное моделирование многослойных тонких композитных пластин с уединенными дефектами. Математическое моделирование и численные методы, 2016, №4 (12), c. 47-66



539.3 Конечно-элементное моделирование эффективных вязкоупругих свойств однонаправленных композиционных материалов

Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Губарева Е. А. (МГТУ им.Н.Э.Баумана), Сборщиков С. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-2-2848


Предложена методика расчета эффективных вязкоупругих характеристик композиционных материалов при установившихся циклических колебаниях, основанная на методе асимптотического осреднения периодических структур и конечно-элементном решении локальных задач вязкоупругости на ячейке периодичности композитов. Приведены примеры численного моделирования вязкоупругих характеристик однонаправленно-армированных композитов и расчетов комплексных тензоров концентрации напряжений в ячейке периодичности. Проведен сравнительный анализ зависимостей тангенса угла потерь комплексных модулей упругости композита от частоты колебаний, полученных с помощью метода конечных элементов и по приближенным смесевым формулам. Показано, то использование приближенных смесевых формул для расчета вязкоупругих характеристик, которые часто применяют для оценки диссипативных характеристик композитов, может давать существенную погрешность в расчетах.


Димитриенко Ю. И., Губарева Е. А., Сборщиков С. В. Конечно-элементное моделирование эффективных вязкоупругих свойств однонаправленных композиционных материалов. Математическое моделирование и численные методы, 2014, №2 (2), c. 28-48



532.5:551.465 Численное моделирование воздействия точечного импульсного источника в жидкости на ледяной покров

Савин А. С. (МГТУ им.Н.Э.Баумана), Горлова Н. Е. (МГТУ им.Н.Э.Баумана), Струнин П. А. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2017-1-7890


Рассмотрены плоская и пространственная задачи о возмущении ледяного покрова точечным импульсным источником, локализованным в толще бесконечно глубокой жидкости. Проведено численное исследование возмущений ледяного покрова разной толщины источниками, находящимися на разных глубинах. Основное внимание уделено возмущениям ледяного покрова, возникающим непосредственно над источником.


Савин А. С., Горлова Н. Е., Струнин П. А. Численное моделирование воздействия точечного импульсного источника в жидкости на ледяной покров. Математическое моделирование и численные методы, 2017, №1 (13), c. 78-90



539.3 Теория пластин, основанная на методе асимптотических разложений

Шешенин С. В. (МГУ им. М.В. Ломоносова), Скопцов К. А. (МГУ им. М.В. Ломоносова)


doi: 10.18698/2309-3684-2014-2-4961


Приведено сравнение результатов асимптотического анализа поперечного изгиба многослойной пластины под воздействием поверхностной нагрузки с классическими теориями тонких и толстых пластин. Слои пластины полагаются составленными из однородных упругих ортотропных материалов.


Шешенин С. В., Скопцов К. А. Теория пластин, основанная на методе асимптотических разложений. Математическое моделирование и численные методы, 2014, №2 (2), c. 49-61



<< 2 >>