Рубрика: "01.02.00 Механика"
doi: 10.18698/2309-3684-2016-4-1733
Получена математическая модель для определения параметров продольных автоколебаний, самовозбуждающихся в напорном движении газа при локальном теплоподводе к потоку. Установлено, что при определенных условиях подвод теплоты к газу изменяет гидравлические характеристики течения, порождая эффект «отрицательного» сопротивления. В этом случае возбуждение автоколебаний возможно даже при монотонно убывающей напорной характеристике нагнетателя.
Басок Б. И., Гоцуленко В. В. Моделирование автоколебаний напорного движения газа, возбуждаемых теплоподводом. Математическое моделирование и численные методы, 2016, №4 (12), c. 17-33
doi: 10.18698/2309-3684-2015-2-2345
Рассмотрен класс перспективных анизогридных конструкций, представляющих сетчатые оболочки из углепластика. Приведен краткий анализ существующих подходов к моделированию сетчатых конструкций. Для достоверного описания сложного поведения анизогридных конструкций при воздействии различных нагру-зок предложены математическая и вычислительная модели. Высокая степень точности и устойчивости вычислительной модели, основанной на разложениях неизвестных функций по базису Фурье и базису, состоящему из полиномов Чебы-шева, обусловлена отсутствием насыщения таких методов приближения. Эф-фективность предложенных моделей и методов показана на примере решения тестовых краевых задач и задачи осевого сжатия анизогридной цилиндрической оболочки.
Голушко С. К., Семисалов Б. В. Численное моделирование деформирования анизогридных конструкций с применением высокоточных схем без насыщения. Математическое моделирование и численные методы, 2015, №2 (6), c. 23-45
doi: 10.18698/2309-3684-2015-1-6782
Предложена методика численного конечно-элементного решения задачи овализации, которую используют при экспериментальной отработке новых материалов для авиационной промышленности, в целях определения сопротивления деформированию элементов конструкций с наличием концентраторов напряжений, главным образом, соединительных элементов. Методика основана на трехмерном конечно-элементном решении задачи упругопластического деформирования пластин с отверстием при смятии и предназначена для сокращения экспериментальных исследований путей замены их на численные эксперименты. Используется модель малых упругопластических деформаций Ильюшина. Представлены результаты численного моделирования трехмерного напряженно-деформированного состояния упругопластических пластин при смятии, а также результаты экспериментальных исследований деформирования пластин из алюминиевого сплава 163. Показано, что результаты численного и экспериментального моделирования деформирования пластин при смятии достаточно хорошо совпадают.
Димитриенко Ю. И., Губарева Е. А., Сборщиков С. В., Ерасов В. С., Яковлев Н. О. Численное моделирование и экпериментальное исследование деформирования упругопластических пластин при смятии. Математическое моделирование и численные методы, 2015, №1 (5), c. 67-82
doi: 10.18698/2309-3684-2015-4-6674
В рамках решения задачи активного управления упругими и демпфирующими элементами подвесок многоосных колесных машин (МКМ) остро стоит задача исследования свойств семейств подвесок, спроектированных как для различных ходов, так и для различных нагрузок. Методами экспериментальных исследований проведена проверка адекватности математической модели движения МКМ с учетом податливости несущей системы на кручение. Проведенное сравнение расчетных и экспериментальных данных показывает хорошую сходимость результатов.
Жилейкин М. М., Сарач Е. Б. Проверка адекватности математической модели движения многоосной колесной машины с податливой на кручение несущей системой методами экспериментальных исследований. Математическое моделирование и численные методы, 2015, №4 (8), c. 66-74
533.6.07 Сверхзвуковое течение в осесимметричном канале
doi: 10.18698/2309-3684-2015-1-109120
Разработанный метод расчета сверхзвукового течения внутри осесимметричного канала учитывает образование отраженных от стенок канала волн и их влияние на течение внутри канала. Благодаря этому удается прогнозировать не только аэродинамические свойства аэродинамической формы в зависимости от ее местоположения в канале, но и воздействие находящейся в этом канале аэродинамической формы на стенки такого канала.
Максимов Ф. А. Сверхзвуковое течение в осесимметричном канале. Математическое моделирование и численные методы, 2015, №1 (5), c. 109-120
536.2 Применение метода наименьших квадратов к задаче о переносе излучения в шаровой полости
doi: 10.18698/2309-3684-2015-4-5365
Многие используемые в технике теплозащитные материалы имеют пористую структуру. При интенсивном тепловом воздействии возникает необходимость учитывать перенос тепловой энергии путем излучения в порах таких материалов. Построена математическая модель, описывающая теплообмен излучением в шаровой полости, форму которой можно рассматривать как среднюю
статистическую по отношению к формам замкнутых пор в твердых телах. Для количественного анализа этой модели использован метод наименьших квадратов. Введен эквивалентный коэффициент теплопроводности условной сплошной среды, заполняющей пору, что позволяет рассматривать материал с пористой структурой как сплошное неоднородное твердое тело.
Зарубин В. С., Пугачев О. В., Савельева И. Ю. Применение метода наименьших квадратов к задаче о переносе излучения в шаровой полости. Математическое моделирование и численные методы, 2015, №4 (8), c. 53-65
doi: 10.18698/2309-3684-2014-1-1835
Предложен метод численно-аналитического решения системы уравнений в частных производных, описывающих естественную тепловую конвекцию в двумерной полости сложной формы с произвольными граничными условиями (метод PGRM). Новый подход основан на комбинации методов Петрова – Галеркина и R-функций (функций Рвачева) и дает возможность получить априори удовлетворяющие граничным условиям представления функций температуры, вихря и тока в виде разложений по некоторым базисам. Согласованный выбор базисов позволяет естественным образом аппроксимировать краевые условия для функции тока. Нестационарные задачи конвекции решаются путем совместного использования PGRM и метода прямых (метод Роте).
Басараб М. А. Численно-аналитический метод решения двумерных задач естественной конвекции в замкнутых полостях. Математическое моделирование и численные методы, 2014, №1 (1), c. 18-35
532.28 Моделирование волнового воздействия стратифицированного течения на подводный трубопровод
doi: 10.18698/2309-3684-2014-2-6276
Исследованы силовые воздействия на подводный трубопровод, связанные с генерацией волн на границе слоев придонного течения. Получено интегральное представление для силы воздействия со стороны водной среды на трубопровод, проведен его численный анализ. Выявлены условия обтекания, при которых происходит значительное увеличение гидродинамических реакций.
Владимиров И. Ю., Корчагин Н. Н., Савин А. С. Моделирование волнового воздействия стратифицированного течения на подводный трубопровод. Математическое моделирование и численные методы, 2014, №2 (2), c. 62-76
51-72:519.688 Моделирование фрактального композита и исследование его электрических характеристик
doi: 10.18698/2309-3684-2017-1-2231
Рассмотрена модель слоистого иерархически построенного композита, структура которого имеет морфологию, подобную фрактальному образованию. Разработан алгоритм исследования взаимодействия переменного электрического поля с фрактальным композитом, а также программный комплекс, позволяющий осуществлять моделирование фрактальных характеристик исследуемого композита и производить расчеты электрических параметров композитной среды. Исследованы границы применения разработанной модели: максимальные и минимальные размеры композита, при которых проявляются фрактальные свойства. Изучены частотные зависимости диэлектрической проницаемости фрактального композита.
Результаты исследования могут быть использованы при конструировании материалов с заранее заданными электрофизическими параметрами и характеристиками, а также при разработке элементов и устройств, обладающих поглощающими и селективными свойствами.
Корчагин С. А., Терин Д. В., Клинаев Ю. В. Моделирование фрактального композита и исследование его электрических характеристик. Математическое моделирование и численные методы, 2017, №1 (13), c. 22-31