Рубрика: "01.02.00 Механика"
doi: 10.18698/2309-3684-2015-4-92109
Проанализированы вопросы сходимости итерационного процесса и достоверности решений, получаемых методом установления, на примере численного решения задачи стационарного течения несжимаемой вязкой жидкости в плоской квадратной каверне с подвижной верхней крышкой. Задача решается при числах Рейнольдса 15 000 < Re < 20 000 и шагах сеточного разбиения 1/128 > h > 1/2048. Показано, что не при всех соотношениях Re и h итерационный процесс установления
решения сходится, а полученные стационарные решения достоверны хотя бы на качественном уровне. В системе координат (Re, 1/h) проведен качественный анализ результатов решения задачи с точки зрения сходимости итераций, достоверности получаемых решений и затрат машинного времени.
Фомин А. А., Фомина Л. Н. О стационарном решении задачи течения несжимаемой вязкой жидкости при больших числах Рейнольдса. Математическое моделирование и численные методы, 2015, №4 (8), c. 92-109
536.2 Эффективная теплопроводность композита в случае отклонений формы включений от шаровой
doi: 10.18698/2309-3684-2014-4-317
На основе математической модели теплового взаимодействия включения и матрицы выполнена оценка влияния отклонения формы включений от шаровой на эффективный коэффициент теплопроводности композита и связанное с таким отклонением возможное возникновение анизотропии композита по отношению к свойству теплопроводности. С использованием двойственной вариационной формулировки стационарной задачи теплопроводности в неоднородном теле построены двусторонние оценки эффективных коэффициентов теплопроводности.
Зарубин В. С., Кувыркин Г. Н., Савельева И. Ю. Эффективная теплопроводность композита в случае отклонений формы включений от шаровой. Математическое моделирование и численные методы, 2014, №4 (4), c. 3-17
doi: 10.18698/2309-3684-2016-4-1733
Получена математическая модель для определения параметров продольных автоколебаний, самовозбуждающихся в напорном движении газа при локальном теплоподводе к потоку. Установлено, что при определенных условиях подвод теплоты к газу изменяет гидравлические характеристики течения, порождая эффект «отрицательного» сопротивления. В этом случае возбуждение автоколебаний возможно даже при монотонно убывающей напорной характеристике нагнетателя.
Басок Б. И., Гоцуленко В. В. Моделирование автоколебаний напорного движения газа, возбуждаемых теплоподводом. Математическое моделирование и численные методы, 2016, №4 (12), c. 17-33
doi: 10.18698/2309-3684-2015-2-7386
Предложен алгоритм идентификации параметров — постоянных времени турби-ны с использованием градиентного метода с настраиваемой моделью. Настраи-ваемая математическая модель имеет такую же структуру, как и объект иден-тификации. Критерий идентификации формируется на основе функции потерь, которая представляет собой невязку между левой и правой частями уравнения, описывающего настраиваемую модель. Тем самым удается избежать необходи-мости нахождения в явном виде решения нелинейного уравнения для настраивае-мой модели. Вместо выходного сигнала в модели используется сигнал, наблюдае-мый на выходе идентифицируемого объекта. Поскольку математические модели являются нелинейными, для решения задачи применены линеаризация Ньютона – Канторовича и аппарат матричных операторов. Рассмотрены особенности вы-числения вектора градиента, алгоритм идентификации и его организация. Приве-дены результаты идентификации двух постоянных времени для математической модели турбины ПТ-12/15-35/10М.
Корнюшин Ю. П., Егупов Н. Д., Корнюшин П. Ю. Идентификация параметров исполнительных устройств регуляторов паровой энергетической турбины с использованием аппарата матричных операторов. Математическое моделирование и численные методы, 2015, №2 (6), c. 73-86
doi: 10.18698/2309-3684-2016-3-2432
Предложен метод расчета динамической устойчивости цилиндрической оболочки при нагружении ее осевой сжимающей нагрузкой, изменяющейся во времени, и осевой циклической нагрузкой, которая изменяется по определенному закону. В качестве примера рассмотрены случаи осевой нагрузки, меняющейся по линейному закону, и циклической нагрузки, которая меняется по гармоническому закону. Для циклического нагружения приведена диаграмма Айнса — Стретта, определяющая области устойчивости и неустойчивости колебаний оболочки.
Дубровин В. М., Бутина Т. А. Моделирование динамической устойчивости цилиндрической оболочки при циклическом осевом воздействии. Математическое моделирование и численные методы, 2016, №3 (11), c. 24-32
doi: 10.18698/2309-3684-2015-4-6674
В рамках решения задачи активного управления упругими и демпфирующими элементами подвесок многоосных колесных машин (МКМ) остро стоит задача исследования свойств семейств подвесок, спроектированных как для различных ходов, так и для различных нагрузок. Методами экспериментальных исследований проведена проверка адекватности математической модели движения МКМ с учетом податливости несущей системы на кручение. Проведенное сравнение расчетных и экспериментальных данных показывает хорошую сходимость результатов.
Жилейкин М. М., Сарач Е. Б. Проверка адекватности математической модели движения многоосной колесной машины с податливой на кручение несущей системой методами экспериментальных исследований. Математическое моделирование и численные методы, 2015, №4 (8), c. 66-74
doi: 10.18698/2309-3684-2014-1-1835
Предложен метод численно-аналитического решения системы уравнений в частных производных, описывающих естественную тепловую конвекцию в двумерной полости сложной формы с произвольными граничными условиями (метод PGRM). Новый подход основан на комбинации методов Петрова – Галеркина и R-функций (функций Рвачева) и дает возможность получить априори удовлетворяющие граничным условиям представления функций температуры, вихря и тока в виде разложений по некоторым базисам. Согласованный выбор базисов позволяет естественным образом аппроксимировать краевые условия для функции тока. Нестационарные задачи конвекции решаются путем совместного использования PGRM и метода прямых (метод Роте).
Басараб М. А. Численно-аналитический метод решения двумерных задач естественной конвекции в замкнутых полостях. Математическое моделирование и численные методы, 2014, №1 (1), c. 18-35
51-72:519.688 Моделирование фрактального композита и исследование его электрических характеристик
doi: 10.18698/2309-3684-2017-1-2231
Рассмотрена модель слоистого иерархически построенного композита, структура которого имеет морфологию, подобную фрактальному образованию. Разработан алгоритм исследования взаимодействия переменного электрического поля с фрактальным композитом, а также программный комплекс, позволяющий осуществлять моделирование фрактальных характеристик исследуемого композита и производить расчеты электрических параметров композитной среды. Исследованы границы применения разработанной модели: максимальные и минимальные размеры композита, при которых проявляются фрактальные свойства. Изучены частотные зависимости диэлектрической проницаемости фрактального композита.
Результаты исследования могут быть использованы при конструировании материалов с заранее заданными электрофизическими параметрами и характеристиками, а также при разработке элементов и устройств, обладающих поглощающими и селективными свойствами.
Корчагин С. А., Терин Д. В., Клинаев Ю. В. Моделирование фрактального композита и исследование его электрических характеристик. Математическое моделирование и численные методы, 2017, №1 (13), c. 22-31
doi: 10.18698/2309-3684-2015-4-7591
Рассмотрено применение конечно-элементного метода RKDG (Runge — Kutta discontinuous Galerkin) для численного интегрирования трехмерной системы уравнений идеального газа на неструктурированных сетках. Проведено решение двух тестовых задач с помощью представленного алгоритма. Для каждой задачи приведено сравнение с известными аналитическими решениями или же с табличными данными. Дана оценка погрешности решения.
Димитриенко Ю. И., Коряков М. Н., Захаров А. А. Применение метода RKDG для численного решения трехмерных уравнений газовой динамики на неструктурированных сетках. Математическое моделирование и численные методы, 2015, №4 (8), c. 75-91