Рубрика: "01.02.00 Механика"



531.36:521.1 Моделирование динамики космической станции в окрестности астероида

Родников А. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2016-2-5568


Предлагается классификация задач динамики космической станции, совершающей полет в окрестности малой планеты, чье движение вокруг центра масс является регулярной прецессией. Классификация проводится по трем признакам: модели потенциала астероида, способа удерживания станции около малой планеты и решаемой динамической задачи. Приводится обзор результатов автора, полученных к настоящему времени при анализе сформулированных в рамках этой классификации задач. В частности, в случае, когда потенциал астероида моделируется композицией потенциалов двух точечных (действительных или комплексно сопряженных) масс, находящихся на действительном или мнимом расстоянии, строятся множества стационарных орбит свободной станции, а также положений равновесия станции на леере, т.е. тросе, концы которого закреплены в полюсах астероида. Проводится анализ устойчивости некоторых из найденных орбит и положений равновесия. Приводятся некоторые случаи интегрируемости уравнений движения космической станции вдоль леера


Родников А. В. Моделирование динамики космической станции в окрестности астероида. Математическое моделирование и численные методы, 2016, №2 (10), c. 55-68



537.876.4:517.958 Свойства одномерного фотонного кристалла как отражающей или волноведущей структуры в случае H-поляризованного возбуждения

Апельцин В. Ф. (МГТУ им.Н.Э.Баумана), Мозжорина Т. Ю. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-2-327


Рассмотрена двумерная краевая задача о прохождении плоской электромагнитной волны через периодическую слоистую среду, имеющую структуру одномерного фотонного кристалла. Структура имеет конечное число плоскопараллельных слоев, в которой каждая ячейка периодичности состоит из двух слоев с разными действительными значениями постоянной диэлектрической проницаемости и разными толщинами. Показано, что при некотором дополнительном условии, связывающем угол падения плоской волны, толщины слоев, частоту и диэлектрические проницаемости слоев, задача решается до конца в явном виде и приводит к простым выражениям для отраженного от структуры и прошедшего сквозь нее волновых полей. При этом в случае Н-поляризованного поля, в отличие от случая Е-поляризации, свойства данной среды зависят от отношения толщин слоев, умноженных на их диэлектрические проницаемости (при Е-поляризации — только от отношения толщин). В результате фотонный кристалл в зависимости от частоты поля может вести себя как идеально отражающая структура при тех же отношениях толщин слоев, при которых в случае Е-поляризации он становится волноведущей структурой, и наоборот. Произведено сравнение численных расчетов со случаем Е-поляризации.


Апельцин В. Ф., Мозжорина Т. Ю. Свойства одномерного фотонного кристалла как отражающей или волноведущей структуры в случае H-поляризованного возбуждения . Математическое моделирование и численные методы, 2014, №2 (2), c. 3-27



539.3 Численное моделирование деформирования и прочности трехслойных композитных конструкций с дефектами

Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Юрин Ю. В. (МГТУ им.Н.Э.Баумана), Федонюк Н. Н. (ФГУП «Крыловский государственный научный центр»)


doi: 10.18698/2309-3684-2016-3-323


Разработана многоуровневая модель для многомасштабного деформирования трехслойных (сэндвичевых) конструкций из полимерных композиционных материалов типа пластин с заполнителем на основе пенопласта, учитывающая микромеханические процессы деформирования и повреждаемости матрицы, армирующего наполнителя и пенопласта, а также макроскопические дефекты типа непропитки композитных обшивок. Проведено конечно-элементное моделирование напряженно-деформированного состояния, повреждаемости и разрушения трехслойных пластин с обшивками из гибридных композитов из углепластика, с различными размерами дефекта типа непропитки, при изгибе равномерным давлением. Установлены особенности процесса деформирования и повреждаемости данного типа композитных конструкций. Разработанная методика может быть применена для расчета деформирования, повреждаемости и разрушения трехслойных пластин из полимерных композиционных материалов, применяемых в различных отраслях промышленности: судостроении, авиастроении, ракетостроении.


Димитриенко Ю. И., Юрин Ю. В., Федонюк Н. Н. Численное моделирование деформирования и прочности трехслойных композитных конструкций с дефектами. Математическое моделирование и численные методы, 2016, №3 (11), c. 3-23



539.3 Многомасштабное моделирование многослойных тонких композитных пластин с уединенными дефектами

Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Юрин Ю. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2016-4-4766


Разработана многомасштабная модель деформирования многослойных тонких пластин из композиционных материалов с уединенными дефектами. Модель основана на асимптотическом анализе общих трехмерных уравнений механики деформируемого твердого тела. Общее решение трехмерных уравнений сведено к решению задач для тонких пластин без дефектов и локальных трехмерных задач в окрестности дефекта с условием затухания решения на удалении от дефекта. Для расчета многослойных пластин использованы локальные задачи, которые позволяют найти явное решение для всех шести компонент тензора напряжений, в области без дефекта. В зоне дефекта напряжения и перемещения представляет собой суперпозицию двух решений: полученного на основе двумерного расчета пластин и локальной трехмерной задачи механики. Приведен пример численного конечно элементного решения локальной задачи механики для трехслойной композитной пластины с уединенным дефектом в среднем слое. Показано, что влияние дефекта локализовано в непосредственной его окрестности, а максимум концентрации трансверсальных напряжений достигается в окрестности вершины дефекта.


Димитриенко Ю. И., Юрин Ю. В. Многомасштабное моделирование многослойных тонких композитных пластин с уединенными дефектами. Математическое моделирование и численные методы, 2016, №4 (12), c. 47-66



517.9:539.3:519.6 Численное моделирование движения абсолютно гибкого стержня в потоке воздуха

Сорокин Ф. Д. (Институт прикладной математики им. М.В. Келдыша РАН/МГТУ им.Н.Э.Баумана), Низаметдинов Ф. Р. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2016-1-316


Предложен алгоритм расчета напряженно-деформированного состояния абсолютно гибких стержней, взаимодействующих с внешним потоком воздуха. Этот алгоритм основан на замене континуальной механической системы дискретным набором прямолинейных конечных элементов и сосредоточенных масс. Дифференциальные уравнения движения масс, записанные с учетом аэродинамических нагрузок и диссипативных сил, проинтегрированы численным методом, что позволило найти как положение равновесия гибкого стержня в потоке, так и критическую скорость потока, при превышении которой начинаются интенсивные вибрации стержня.


Сорокин Ф. Д., Низаметдинов Ф. Р. Численное моделирование движения абсолютно гибкого стержня в потоке воздуха. Математическое моделирование и численные методы, 2016, №1 (9), c. 3-16



517.1:539.434 Механический аналог, моделирующий процессы неупругого неизотермического деформирования

Зарубин В. С. (МГТУ им.Н.Э.Баумана), Кувыркин Г. Н. (МГТУ им.Н.Э.Баумана), Савельева И. Ю. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-3-2538


Представлен механический аналог, позволяющий на качественном и количественном уровнях описать основные особенности неупругого деформирования конструкционного материала при переменных температурах. Аналог построен с использованием физических представлений о микроструктуре поликристаллических конструкционных материалов и микромеханизме процесса их деформирования в сочетании с известными положениями феноменологических теорий пластичности и ползучести. Применительно к конкретным режимам теплового и механического воздействий на теплонапряженную конструкцию такой подход позволяет выбрать рациональный вариант модели конструкционного материала, достаточно полно описывающий наиболее существенные эффекты, характерные для процесса неупругого неизотермического деформирования. Разработан один из вариантов такой модели при одноосном нагружении материала и приведен пример подбора числовых значений ее параметров.


Зарубин В. С., Кувыркин Г. Н., Савельева И. Ю. Механический аналог, моделирующий процессы неупругого неизотермического деформирования. Математическое моделирование и численные методы, 2014, №3 (3), c. 25-38



539.3+519.86 Многомасштабное моделирование упругопластических композитов с учетом повреждаемости

Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Губарева Е. А. (МГТУ им.Н.Э.Баумана), Сборщиков С. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2016-2-323


Предложена модель деформирования упругопластических композиционных материалов периодической структуры с учетом повреждаемости фаз композита, основанная на варианте деформационной теории пластичности при активном нагружении. Для моделирования эффективных характеристик упругопластических композитов применен метод асимптотической гомогенизации периодических структур. Для численного решения локальных задач упругопластичности с учетом повреждаемости на ячейке периодичности предложен вариант итерационного метода линеаризации, а для численного решения линеаризованных задач на ячейке периодичности — метод конечных элементов с использованием программной среды SMCM, разработанной в Научно-образовательном центре «Суперкомпьютерное инженерное моделирование и разработка программных комплексов» (СИМПЛЕКС) МГТУ им. Н.Э. Баумана. Приведены примеры численных расчетов для дисперсно-армированного металлокомпозита (алюминиевой матрицы, наполненной частицами SiC). Представлены результаты численного моделирования процессов деформирования, накопления повреждений и разрушения металлокомпозита.


Димитриенко Ю. И., Губарева Е. А., Сборщиков С. В. Многомасштабное моделирование упругопластических композитов с учетом повреждаемости. Математическое моделирование и численные методы, 2016, №2 (10), c. 3-23



681.5.015.23 Идентификация параметров исполнительных устройств регуляторов паровой энергетической турбины с использованием аппарата матричных операторов

Корнюшин Ю. П. (МГТУ им.Н.Э.Баумана), Егупов Н. Д. (МГТУ им.Н.Э.Баумана), Корнюшин П. Ю. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2015-2-7386


Предложен алгоритм идентификации параметров — постоянных времени турби-ны с использованием градиентного метода с настраиваемой моделью. Настраи-ваемая математическая модель имеет такую же структуру, как и объект иден-тификации. Критерий идентификации формируется на основе функции потерь, которая представляет собой невязку между левой и правой частями уравнения, описывающего настраиваемую модель. Тем самым удается избежать необходи-мости нахождения в явном виде решения нелинейного уравнения для настраивае-мой модели. Вместо выходного сигнала в модели используется сигнал, наблюдае-мый на выходе идентифицируемого объекта. Поскольку математические модели являются нелинейными, для решения задачи применены линеаризация Ньютона – Канторовича и аппарат матричных операторов. Рассмотрены особенности вы-числения вектора градиента, алгоритм идентификации и его организация. Приве-дены результаты идентификации двух постоянных времени для математической модели турбины ПТ-12/15-35/10М.


Корнюшин Ю. П., Егупов Н. Д., Корнюшин П. Ю. Идентификация параметров исполнительных устройств регуляторов паровой энергетической турбины с использованием аппарата матричных операторов. Математическое моделирование и численные методы, 2015, №2 (6), c. 73-86



539.3 Численное моделирование и экпериментальное исследование деформирования упругопластических пластин при смятии

Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Губарева Е. А. (МГТУ им.Н.Э.Баумана), Сборщиков С. В. (МГТУ им.Н.Э.Баумана), Ерасов В. С. (ФГУП «ВИАМ» ГНЦ РФ), Яковлев Н. О. (ФГУП «ВИАМ» ГНЦ РФ)


doi: 10.18698/2309-3684-2015-1-6782


Предложена методика численного конечно-элементного решения задачи овализации, которую используют при экспериментальной отработке новых материалов для авиационной промышленности, в целях определения сопротивления деформированию элементов конструкций с наличием концентраторов напряжений, главным образом, соединительных элементов. Методика основана на трехмерном конечно-элементном решении задачи упругопластического деформирования пластин с отверстием при смятии и предназначена для сокращения экспериментальных исследований путей замены их на численные эксперименты. Используется модель малых упругопластических деформаций Ильюшина. Представлены результаты численного моделирования трехмерного напряженно-деформированного состояния упругопластических пластин при смятии, а также результаты экспериментальных исследований деформирования пластин из алюминиевого сплава 163. Показано, что результаты численного и экспериментального моделирования деформирования пластин при смятии достаточно хорошо совпадают.


Димитриенко Ю. И., Губарева Е. А., Сборщиков С. В., Ерасов В. С., Яковлев Н. О. Численное моделирование и экпериментальное исследование деформирования упругопластических пластин при смятии. Математическое моделирование и численные методы, 2015, №1 (5), c. 67-82



<< 3 >>