Рубрикатор





Рубрика: "01.02.00 Механика"



551.521 Моделирование двумерных полей атмосферных параметров в задачах лазерного дистанционного зондирования

Иванов С.Е.(МГТУ им.Н.Э.Баумана), Городничев В.А.(МГТУ им.Н.Э.Баумана), Белов М.Л.(МГТУ им.Н.Э.Баумана), Михайловская М.Б.(МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2015-4-110121


Рассмотрена задача моделирования двумерных полей аэрозольного коэффициента обратного рассеяния атмосферы и скорости атмосферного ветра, актуальная при математическом моделировании работы систем лазерного дистанционного зондирования атмосферы и систем лазерной локации. Для ветрового корреляционного лидара проведен выбор оптимальных параметров математического моделирования с точки зрения времени моделирования и соответствия статистических характеристик моделируемых полей атмосферных параметров заданным статистическим характеристикам. Показано, что при малых размерах неоднородностей атмосферы более эффективно использовать метод формирующего фильтра, а при больших — спектральный метод.


Иванов С. Е., Городничев В. А., Белов М. Л., Михайловская М. Б. Моделирование двумерных полей атмосферных параметров в задачах лазерного дистанционного зондирования. Математическое моделирование и численные методы, 2015, №4 (8), c. 110-121



519.6:533.6 Применение метода RKDG для численного решения трехмерных уравнений газовой динамики на неструктурированных сетках

Димитриенко Ю.И.(МГТУ им.Н.Э.Баумана), Коряков М.Н.(МГТУ им.Н.Э.Баумана), Захаров А.А.(МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2015-4-7591


Рассмотрено применение конечно-элементного метода RKDG (Runge — Kutta discontinuous Galerkin) для численного интегрирования трехмерной системы уравнений идеального газа на неструктурированных сетках. Проведено решение двух тестовых задач с помощью представленного алгоритма. Для каждой задачи приведено сравнение с известными аналитическими решениями или же с табличными данными. Дана оценка погрешности решения.


Димитриенко Ю. И., Коряков М. Н., Захаров А. А. Применение метода RKDG для численного решения трехмерных уравнений газовой динамики на неструктурированных сетках. Математическое моделирование и численные методы, 2015, №4 (8), c. 75-91



539.3 Моделирование вязкоупругости полиуретана при умеренно высоких скоростях деформирования

Белкин А.Е.(МГТУ им.Н.Э.Баумана), Даштиев И.З.(ЦНИИСМ), Лонкин Б.В.(МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-3-3954


Представлена математическая модель вязкоупругого поведения полиуретана СКУ-ПФЛ-100 для диапазона деформаций 0...30 % и умеренно высоких скоростей деформирования, не превышающих значения 10−1. Для определения вязкой составляющей деформации применена реологическая модель Бергстрема – Бойс. Связь напряжения с упругой составляющей деформации описана с помощью потенциала Арруды – Бойс. Для определения параметров модели использовались экспериментальные диаграммы сжатия полиуретана, полученные на машине Instron Electropuls 1000 при различных скоростях деформирования. Приведены значения параметров модели, найденные путем минимизации функции отклонений расчетных величин от результатов эксперимента. Показано, что в рассмотренном диапазоне деформаций и их скоростей модель позволяет описать поведение полиуретана с достаточной для практических целей точностью. Модель предназначена для расчета полиуретановых деталей амортизаторов, поглощающих аппаратов, буферов и других конструкций, испытывающих динамические нагрузки.


Белкин А. Е., Даштиев И. З., Лонкин Б. В. Моделирование вязкоупругости полиуретана при умеренно высоких скоростях деформирования. Математическое моделирование и численные методы, 2014, №3 (3), c. 39-54



534.142:536.24+621.63 Моделирование автоколебаний напорного движения газа, возбуждаемых теплоподводом

Басок Б.И.(Институт технической теплофизики НАН Украины), Гоцуленко В.В.(Институт технической теплофизики НАН Украины)


doi: 10.18698/2309-3684-2016-4-1733


Получена математическая модель для определения параметров продольных автоколебаний, самовозбуждающихся в напорном движении газа при локальном теплоподводе к потоку. Установлено, что при определенных условиях подвод теплоты к газу изменяет гидравлические характеристики течения, порождая эффект «отрицательного» сопротивления. В этом случае возбуждение автоколебаний возможно даже при монотонно убывающей напорной характеристике нагнетателя.


Басок Б. И., Гоцуленко В. В. Моделирование автоколебаний напорного движения газа, возбуждаемых теплоподводом. Математическое моделирование и численные методы, 2016, №4 (12), c. 17-33



551.5:517 Моделирование стабилизации глобального климата управляемыми выбросами стратосферного аэрозоля

Пархоменко В.П.(Вычислительного центра РАН/МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-2-115126


В течение последних десятилетий наблюдаются изменения климата, выражающиеся в его глобальном потеплении. Эти изменения в основном связывают с антропогенным увеличением количества парниковых газов в атмосфере (главный из них — СО2). В статье рассматривается проблема и возможность стабилизации климата на современном уровне. Исследование ведется на основе сезонной глобальной совместной трехмерной гидродинамической модели климата, включающей модель Мирового океана с реальными глубинами и конфигурацией материков,
модель эволюции морского льда и энерго-влагобалансовую модель атмосферы. На первом этапе проведены расчеты прогнозирования климата до 2100 г. с использованием сценария роста СО2 А2, предложенного IPCC. Они дают увеличение среднегодовой поверхностной температуры атмосферы на 3,5 С. Проведены серии расчетов для оценки возможности стабилизации климата на уровне 2010 г. путем управления выбросами в стратосферу сульфатного аэрозоля, отражающего и рассеивающего часть приходящего солнечного излучения. Вычислены концентрации (альбедо) аэрозоля с 2010 до 2100 г., позволяющие стабилизировать среднегодовую температуру поверхностного слоя атмосферы. Показано, что таким путем невозможно добиться приближения климата к существующему, хотя можно значительно ослабить парниковый эффект. При условии однородного по пространству распределения аэрозоля в стратосфере можно стабилизировать среднюю глобальную температуру атмосферы, но при этом в низких и средних иротах климат будет холоднее на 0,1…0,2 С, а в высоких широтах — теплее на 0,2…1,2 С. Кроме того, эти различия имеют сильно выраженный сезонный ход — в зимний период они увеличиваются. Прекращение выбросов аэрозоля в 2080 г. приведет к быстрому увеличению средней глобальной температуры атмосферы, приближающейся в 2100 г. к значению температуры без аэрозоля.


Пархоменко В. П. Моделирование стабилизации глобального климата управляемыми выбросами стратосферного аэрозоля. Математическое моделирование и численные методы, 2014, №2 (2), c. 115-126



629.1.028 Математическая модель движения многоосной колесной машины с податливой на кручение несущей системой

Жилейкин М.М.(МГТУ им. Н.Э. Баумана), Сарач Е.Б.(МГТУ им. Н.Э. Баумана)


doi: 10.18698/2309-3684-2015-3-1740


В рамках решения задачи активного управления упругими и демпфирующими элементами подвесок многоосных колесных машин (МКМ) остро стоит задача исследования свойств семейств подвесок, спроектированных как для различных ходов, так и для различных нагрузок. При этом их кинематические схемы также могут быть весьма разнообразны. Сбор требуемого объема информации для семейств автомобилей, различных по конструкции и эксплуатационным характеристикам, представляется неосуществимым. Провести полные аналитические исследования по определению соответствующих характеристик не представляется возможным. Эта задача с успехом может быть решена только с помощью моделирования.
Разработана математическая модель движения МКМ, особенностью которой является то, что скорость машины задается не принудительно, а формируется силами взаимодействия вращающихся колесных движителей с опорным основанием. Это позволяет получить высокую точность при моделировании реальных процессов движения МКМ по неровностям. Разработанная модель может быть применена для исследования различных законов управления подвеской многоосных колесных машин.


Жилейкин М. М., Сарач Е. Б. Математическая модель движения многоосной колесной машины с податливой на кручение несущей системой. Математическое моделирование и численные методы, 2015, №3 (7), c. 17-40



629.762 Восстановление параметров движения летательного аппарата по данным их дискретной регистрации. Ч. 1. Способы, не использующие регуляризацию

Плюснин А.В.(ВПК «НПО машиностроения»)


doi: 10.18698/2309-3684-2016-1-6888


Рассмотрены способы восстановления параметров движения летательного аппарата в контейнере по данным их регистрации с большой дискретностью в процессе экспериментальной отработки газодинамического выброса.


Плюснин А. В. Восстановление параметров движения летательного аппарата по данным их дискретной регистрации. Ч. 1. Способы, не использующие регуляризацию. Математическое моделирование и численные методы, 2016, №1 (9), c. 68-88



539.3 Околорезонансные режимы подвижной нагрузки в плоской задаче теории упругости для полупространства с тонким покрытием

Каплунов Ю.Д.(Кильский университет), Облакова Т.В.(МГТУ им.Н.Э.Баумана), Приказчиков Д.А.(МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-1-5767


Рассмотрена плоская стационарная задача теории упругости о движении вертикальной сосредоточенной нагрузки вдоль поверхности упругого полупространства с тонким покрытием. В рамках длинноволновой асимптотической модели для волны Рэлея в случае упругого полупространства с покрытием исследуются режимы в приповерхностном слое при скоростях движения нагрузки, близких к резонансной скорости поверхностной волны. Получена классификация режимов в зависимости от соотношения скорости движения нагрузки и резонансной скорости, а также от знака линейного коэффициента дисперсии покрытия. Установлены режимы, в которых имеет место излучение от источника. Полученные результаты могут быть обобщены на случай более сложных физических свойств материала покрытия, включая эффекты анизотропии, вязкости и предварительной деформации.


Каплунов Ю. Д., Облакова Т. В., Приказчиков Д. А. Околорезонансные режимы подвижной нагрузки в плоской задаче теории упругости для полупространства с тонким покрытием. Математическое моделирование и численные методы, 2014, №1 (1), c. 57-67



519.63:532.5 Численно-аналитический метод решения двумерных задач естественной конвекции в замкнутых полостях

Басараб М.А.(МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-1-1835


Предложен метод численно-аналитического решения системы уравнений в частных производных, описывающих естественную тепловую конвекцию в двумерной полости сложной формы с произвольными граничными условиями (метод PGRM). Новый подход основан на комбинации методов Петрова – Галеркина и R-функций (функций Рвачева) и дает возможность получить априори удовлетворяющие граничным условиям представления функций температуры, вихря и тока в виде разложений по некоторым базисам. Согласованный выбор базисов позволяет естественным образом аппроксимировать краевые условия для функции тока. Нестационарные задачи конвекции решаются путем совместного использования PGRM и метода прямых (метод Роте).


Басараб М. А. Численно-аналитический метод решения двумерных задач естественной конвекции в замкнутых полостях. Математическое моделирование и численные методы, 2014, №1 (1), c. 18-35



1>>