Рубрика: "01.02.00 Механика"
doi: 10.18698/2309-3684-2017-1-3254
Представлены результаты разработки модели деформирования несжимаемых слоистых композитов с конечными деформациями по характеристикам отдельных слоев. Предложен вариант метода асимптотического осреднения для слоистых нелинейно-упругих несжимаемых композитов с конечными деформациями и периодической структурой. Использовано универсальное представление определяющих соотношений для несжимаемых слоев композита, предложенное Ю.И. Димитриенко, позволяющее проводить моделирование одновременно для комплекса различных нелинейно-упругих моделей сред, отличающихся выбором пары энергетических тензоров. Доказано, что, если все слои композита являются несжимаемыми, то композит в целом также является несжимаемой, но анизотропной средой. Рассмотрена задача об одноосном растяжении слоистой пластины из несжимаемых слоев с конечными деформациями, с помощью разработанного метода рассчитаны эффективные диаграммы деформирования, связывающие компоненты осредненных тензоров напряжений Пиолы — Кирхгофа и градиента деформаций, а также распределение напряжений в слоях композита.
Разработанный метод расчета эффективных диаграмм деформирования и напряжений в слоях композита может быть использован при проектировании эластомерных композитов с заданными свойствами.
Димитриенко Ю. И., Губарева Е. А., Кольжанова Д. Ю., Каримов С. Б. Моделирование несжимаемых слоистых композитов с конечными деформациями на основе метода асимптотического осреднения. Математическое моделирование и численные методы, 2017, №1 (13), c. 32-54
doi: 10.18698/2309-3684-2015-2-4657
Предложен метод расчета динамической устойчивости цилиндрической оболочки при нагружении осевой сжимающей нагрузкой, изменяющейся во времени. В каче-стве примера рассмотрен случай, когда нагрузка меняется по линейному закону
Дубровин В. М., Бутина Т. А. Моделирование динамической устойчивости цилиндрической оболочки при действии осевой сжимающей нагрузки. Математическое моделирование и численные методы, 2015, №2 (6), c. 46-57
doi: 10.18698/2309-3684-2015-1-5066
В статье рассмотрены дисперсионные волновые процессы в симметричной трехслойной пластине. Каждый из слоев пластины предполагается упругим и изотропным. Приведен численный и асимптотический анализ дисперсионного соотношения. Построенные численные решения дисперсионного соотношения анализируются в коротковолновой области, с выводом соответствующих асимптотик. Полученные приближенные решения сравниваются с точными решениями, демонстрируя весьма широкую область применимости, значительно превосходящую ожидаемую. Полученные асимптотические решения могут найти применение в оценках погрешности при вычислении интегралов по волновому числу, в связи с чем представляется возможным развитие соответствующих гибридных численно-асимптотических методов для нестационарных волновых полей, возникающих при ударных воздействиях.
Лашаб М. И., Роджерсон Г. Э., Сэндифорд К. Д. Коротковолновые асимптотики дисперсионных соотношений в случае симметричной трехслойной пластины. Математическое моделирование и численные методы, 2015, №1 (5), c. 50-66
doi: 10.18698/2309-3684-2015-3-4157
Получено аналитическое решение модельной задачи о волновом воздействии стратифицированного течения на подводный трубопровод в случае циркуляционного обтекания. Проведены численные расчеты гидродинамических реакций для реальных морских условий. Найдены значения параметров потока, при которых волновое сопротивление и подъемная сила трубопровода достигают максимумов.
Владимиров И. Ю., Корчагин Н. Н., Савин А. С. Гидродинамические реакции в модели циркуляционного обтекания трубопровода придонным морским течением. Математическое моделирование и численные методы, 2015, №3 (7), c. 41-57
532.28 Моделирование волнового воздействия стратифицированного течения на подводный трубопровод
doi: 10.18698/2309-3684-2014-2-6276
Исследованы силовые воздействия на подводный трубопровод, связанные с генерацией волн на границе слоев придонного течения. Получено интегральное представление для силы воздействия со стороны водной среды на трубопровод, проведен его численный анализ. Выявлены условия обтекания, при которых происходит значительное увеличение гидродинамических реакций.
Владимиров И. Ю., Корчагин Н. Н., Савин А. С. Моделирование волнового воздействия стратифицированного течения на подводный трубопровод. Математическое моделирование и численные методы, 2014, №2 (2), c. 62-76
doi: 10.18698/2309-3684-2016-3-2432
Предложен метод расчета динамической устойчивости цилиндрической оболочки при нагружении ее осевой сжимающей нагрузкой, изменяющейся во времени, и осевой циклической нагрузкой, которая изменяется по определенному закону. В качестве примера рассмотрены случаи осевой нагрузки, меняющейся по линейному закону, и циклической нагрузки, которая меняется по гармоническому закону. Для циклического нагружения приведена диаграмма Айнса — Стретта, определяющая области устойчивости и неустойчивости колебаний оболочки.
Дубровин В. М., Бутина Т. А. Моделирование динамической устойчивости цилиндрической оболочки при циклическом осевом воздействии. Математическое моделирование и численные методы, 2016, №3 (11), c. 24-32
62-752 Моделирование нагрузок на составные упругие оболочки методом начального приближения
doi: 10.18698/2309-3684-2017-2-2838
Предложен метод расчета нагрузок (усилий, моментов) на составную оболочку, состоящую из внешней и внутренней оболочек, соединенных упругими связями, в случае когда внешняя оболочка находится под воздействием поперечной нагрузки (изгибающего момента, перерезывающих сил и распределенной инерционной нагрузки). В качестве примера использования метода исследовано влияние жесткостных характеристик внешней оболочки на нагружение внутренней оболочки.
Дубровин В.М., Бутина Т.А. Моделирование нагрузок на составные упругие оболочки методом начального приближения. Математическое моделирование и численные методы, 2017, No 2, с. 28–38.
doi: 10.18698/2309-3684-2014-1-5767
Рассмотрена плоская стационарная задача теории упругости о движении вертикальной сосредоточенной нагрузки вдоль поверхности упругого полупространства с тонким покрытием. В рамках длинноволновой асимптотической модели для волны Рэлея в случае упругого полупространства с покрытием исследуются режимы в приповерхностном слое при скоростях движения нагрузки, близких к резонансной скорости поверхностной волны. Получена классификация режимов в зависимости от соотношения скорости движения нагрузки и резонансной скорости, а также от знака линейного коэффициента дисперсии покрытия. Установлены режимы, в которых имеет место излучение от источника. Полученные результаты могут быть обобщены на случай более сложных физических свойств материала покрытия, включая эффекты анизотропии, вязкости и предварительной деформации.
Каплунов Ю. Д., Облакова Т. В., Приказчиков Д. А. Околорезонансные режимы подвижной нагрузки в плоской задаче теории упругости для полупространства с тонким покрытием. Математическое моделирование и численные методы, 2014, №1 (1), c. 57-67
doi: 10.18698/2309-3684-2014-2-2848
Предложена методика расчета эффективных вязкоупругих характеристик композиционных материалов при установившихся циклических колебаниях, основанная на методе асимптотического осреднения периодических структур и конечно-элементном решении локальных задач вязкоупругости на ячейке периодичности композитов. Приведены примеры численного моделирования вязкоупругих характеристик однонаправленно-армированных композитов и расчетов комплексных тензоров концентрации напряжений в ячейке периодичности. Проведен сравнительный анализ зависимостей тангенса угла потерь комплексных модулей упругости композита от частоты колебаний, полученных с помощью метода конечных элементов и по приближенным смесевым формулам. Показано, то использование приближенных смесевых формул для расчета вязкоупругих характеристик, которые часто применяют для оценки диссипативных характеристик композитов, может давать существенную погрешность в расчетах.
Димитриенко Ю. И., Губарева Е. А., Сборщиков С. В. Конечно-элементное моделирование эффективных вязкоупругих свойств однонаправленных композиционных материалов. Математическое моделирование и численные методы, 2014, №2 (2), c. 28-48