539.3 Near-resonant modes of the moving load in the plane problem of elasticity theory for a half-space with a thin coating

Kaplunov J. D. (Keele University), Oblakova T. V. (Bauman Moscow State Technical University), Prikazchikov D. A. (Bauman Moscow State Technical University)

MOVING LOAD, ASYMPTOTIC MODEL, RAYLEIGH WAVE, THIN COATING.


doi: 10.18698/2309-3684-2014-1-5767


The study deals with the plane stationary problem of elasticity theory on the motion of a vertical concentrated load along the surface of an elastic half-space with a thin coating. The authors investigated modes in the surface layer at speeds close to the resonant speed of the surface wave. The research was done within the long-wave asymptotic model for the Rayleigh wave in the case of an elastic coated half-space. The modes are classified according to the ratio between the velocity of the load and the resonance speed and to the dispersion coefficient of linear coverage. The study discovers the modes having radiation from the source. The results obtained can be generalized to more complex physical properties of the coating material, including the effects of anisotropy, viscosity and prestraining.


[1] Achenbach J.D., Keshava S.P. ASME J. Appl. Mech., 1967, vol. 34 (2), pp. 397–404.
[2] Achenbach J.D., Keshava S.P., Herrmann G. ASME J. Appl. Mech., 1967, vol. 34 (6), pp. 910–914.
[3] Tiersten H.F. J. Appl. Phys., 1969, vol. 40, pp. 770–789.
[4] Dai H.-H., Kaplunov J., Prikazchikov D.A. Proc. R. Soc. A., 2010, vol. 466, pp. 3097–3116.
[5] Bovik, P. ASME J. Appl. Mech., 1996, vol. 63, pp. 162–167.
[6] Zakharov D.D. PММ — J. Appl. Math. Mech., 2010, vol. 74 (3), pp. 403–418.
[7] Steigmann D.J., Ogden R.W. IMA J. Appl. Math., 2007, vol. 72, pp. 730–747.
[8] Shuvalov A.L., Every, A.G. Wave Motion, 2008, vol. 45, pp. 857–863.
[9] Schulenberger J. R., Wilcox C.H. Arch. Ration. Mech. Anal., 1971, vol. 41, pp. 46–65.
[10] Vorovich I.I., Babeshko V.A. Dinamicheskie smeshannye zadachi teorii uprugosti dlya neklassicheskikh oblastei [Dynamic mixed problems of elasticity theory for non-classical areas]. Moscow, Nauka Publ., 1979, 320 p.
[11] Babeshko V.A., Glushkov E.V., Zinchenko Zh.F. Dinamika neodnorodnykh lineino-uprugikh sred [Dynamics of heterogeneous linearly elastic media]. Moscow, Nauka Publ., 1989, 343 p.
[12] Kalinchuk V.V., Belyankov T.I. Dinamika poverkhnosti neodnorodnykh sred [Surface dynamics of inhomogeneous media]. Moscow, FIZMATLIT Publ., 2009, 312 p.
[13] Kaplunov J., Zakharov A., Prikazchikov D.A. IMA J. Appl. Math., 2006, vol. 71, pp. 768–782.
[14] Kaplunov J., Nolde E., Prikazchikov D.A. Wave Motion, 2010, vol. 47, pp. 440–451.
[15] Kaplunov J., Prikazchikov D.A., Erbas B., Sahin O. Wave Motion, 2013, vol. 50, pp. 1229–1238.
[16] Erbas B., Kaplunov J., Prikazchikov D.A. IMA J. Appl. Math., 2013, vol. 78(5), pp. 1078–1086.
[17] Kaplunov J., Prikazchikov D.A. CISM Lecture Notes, Springer, 2013, vol. 547, pp. 73–114.
[18] Cole J., Huth J. ASME J. Appl. Mech., 1958, vol. 25, pp. 433–436.
[19] Abramowitz M., Stegun I.A. Handbook of mathematical functions. New York, Dover, 1982.
[20] Muravskiy G.B.. Izv. AN SSSR. Mekhanika tverdogo tela — Proc. Acad. Sci. USSR. Mechanics of rigid body, 1981, vol. 5, pp. 167–179.
[21] Alenitsyn A.G. PММ — J. Appl. Math. Mech., 1963, vol. 27, pp. 547–550.


Kaplunov J., Oblakova T., Prikazchikov D. Near-resonant modes of the moving load in the plane problem of elasticity theory for a half-space with a thin coating. Маthematical Modeling and Coтputational Methods, 2014, №1 (1), pp. 57-67



Download article

Колличество скачиваний: 179