and Computational Methods

doi: 10.18698/2309-3684-2017-1-2231

The study tested a model of a layered hierarchically constructed composite, whose structure has a morphology similar to fractal formation. In our research we developed an algorithm for studying the interaction of an alternating electric field with a fractal composite, as well as a software package that allows simulating fractal characteristics of the composite under study and calculating the electrical parameters of the composite medium. Moreover, we studied the boundaries of the developed model application: the maxand min-dimensions of the composite, at which fractal properties appear. We investigated the frequency dependences of the permittivity of a fractal composite.

The results of the research can be used in designing the materials with predefined electrophysical parameters and characteristics, as well as in developing the elements and devices that possess absorbing and selective properties.

[1] Nikitin A.S. Ekonomika i zhizn — Economy and life, 2012, no. 4, 6 p.

[2] Emets Yu.P. Zhurnal tekhnicheskoy fiziki — Technical Physics. The Russian Journal of Applied Physics, 2005, vol. 75, no. 2, pp. 67–72.

[3] Romanenko I.I., Romanenko M.I., Petrovnina I.N. Molodoy uchenyy — Young Scientist, 2015, no. 7 (87), pp. 198–200.

[4] Korchagin S.A., Terin D.V., Romanchuk S.P. Izvestiya vysshikh uchebnykh zavedeniy. Prikladnaya nelineynaya dinamika — Izvestiya VUZ. Applied Nonlinear Dynamics, 2015, vol. 23, no. 3, pp. 55–64.

[5] But’ko L.N., Buchel’nikov V.D., Bychkov I.V. Physics of the Solid State, 2010, vol. 52, no. 10, pp. 2154–2163.

[6] Dimitrienko Yu.I., Gubareva E.A., Sborschikov S.V. Matematicheskoe modelirovanie i chislennye metody — Mathematical Modeling and Computational Methods, 2016, no. 2 (10), pp. 3–23.

[7] Balankin A.S., Bory Reyes J., Shapiro M. Physica A: Statistical Mechanics and its Applications, 2016, vol. 444, pp. 345–359.

[8] Dimitrienko Yu.I., Yurin Yu.V., Fedonyuk N.N. Matematicheskoe modelirovanie i chislennye metody — Mathematical Modeling and Computational Methods, 2016, no. 3 (11), pp. 3–23.

[9] Mandelbrot B. Science. New Series, 1967, vol. 156, no. 3775, pp. 636–638.

[10] Potapov A.A. Fraktalnye modeli i metody na osnove skeylinga v fundamentalnykh i prikladnykh problemakh sovremennoy fiziki [Fractal models and methods based on scaling in fundamental and applied problems of modern physics]. Neobratimye protsessy v prirode i tekhnike [Irreversible processes in nature and technology]. Moscow, BMSTU Publ., 2008, no. II, pp. 5–107.

[11] Emets Yu.P. Zhurnal tekhnicheskoy fiziki — Technical Physics. The Russian Journal of Applied Physics, 2003, vol. 73, no. 3, pp. 42–53.

[12] Bilenko D.I., Venig S.B., Terin D.V., Belobrovaya O.Ya., Galushka V.V., Galushka I.V. et al. Mnogoparametrovaya diagnostika mikro i nanostruktur [Multiparameter diagnostics of micro- and nanostructures]. Saratov, Yuri Gagarin State Technical University of Saratov Publ., 2015, 98 p.

[13] Korchagin S.A., Klinaev Yu.V., Terin D.V., Romanchuk S.P. Programmnyy kompleks dlya modelirovaniya nelineynykh svoystv kompozitnykh sred “NPC Modeling”: svid-vo o gos. registr. progr. dlya EVM [Software package for modeling non-linear properties of composite media “NPC Modeling”: certificate of state registration of computer programs]. Certificate no. 2016615354 Russian Federation, appl. no. 2016612851, regist. May 20, 2016, 1 p.

[14] Palik E.D., ed. Handbook of optical constants of solids. San Diego, Academic Press, 1998, 999 p.

Korchagin S., Terin D., Klinaev Y. Simulating a fractal composite and studying its electrical characteristics. Маthematical Modeling and Coтputational Methods, 2017, №1 (13), pp. 22-31

Колличество скачиваний: 182