Рубрика: "1.2.2. Математическое моделирование, численные методы и комплексы программ (технические науки)"



519.17 Задача о преследовании в 3D-пространстве с произвольными начальными углами прицеливания

Бодряков В. Ю. (Уральский государственный педагогический университет)


doi: 10.18698/2309-3684-2024-2-6884


В статье впервые получено аналитическое решение задачи о преследовании в системе «хищник–жертва» в евклидовом 3D-пространстве для произвольных начальных углов прицеливания. В процессе преследования жертва движется равномерно и прямолинейно, постоянный по модулю вектор скорости хищника нацелен на жертву. Точное решение задачи получено в форме параметрически заданной пространственной кривой преследования. Получены точные выражения для других существенных характеристик процесса преследования (времени преследования, координат жертвы, длины кривой преследования, и др.). Проведено реалистичное компьютерное моделирование взаимного движения хищника и жертвы в пространстве и во времени; определены характерные параметры процесса преследования. Отмечен значительный дидактический потенциал решенной задачи о 3D-преследовании для подготовки будущих специалистов в области механики и управления; задача может служить содержательной основой для выполнения обучающимися исследовательских проектов, курсовых и выпускных квалификационных работ.


Бодряков В.Ю. Задача о преследовании в 3D-пространстве с произвольными начальными углами прицеливания. Математическое моделирование и численные методы, 2024, № 2, с. 68-84.



519.63 Молекулярно-динамическое моделирование модификации алюминия лазерной ударной волной

Перов Е. А. (Объединенный институт высоких температур РАН), Жаховский В. В. (Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова/Объединенный институт высоких температур РАН), Иногамов Н. А. (Институт теоретической физики им. Л.Д. Ландау РАН), Шепелев В. В. (Институт автоматизации проектирования РАН), Фортова С. В. (Институт автоматизации проектирования РАН), Долуденко А. Н. (Объединенный институт высоких температур РАН)


doi: 10.18698/2309-3684-2023-4-7492


Пластические деформации лежат в основе такой промышленной технологии, как лазерное термоупрочнение или лазерный пиннинг (LSP, laser shock peening). В данной работе методом классической молекулярной динамики исследована возможность упрочнения поверхностного слоя алюминиевого образца, облученного единичным фемтосекундным лазерным импульсом. Рассмотрены три ориентации кристаллической решетки — [1, 0, 0] (первая ориентация кристаллической решетки), [1, 1, 0] (вторая ориентация кристаллической решетки), [1, 1, 1] (третья ориентация кристаллической решетки). Проведено численное исследование влияния различных величин вложенной энергии в диапазоне от 120,98 Дж/м2 до 2540,01 Дж/м2 лазерного импульса на глубину залегания пластических деформаций, влияющих на упрочнение исследуемого материала. Построена зависимость максимальной глубины залегания пластических деформаций от вложенной энергии. Значения энергий подобранны таким образом, что пластический фронт УВ (ударной волны) останавливался до того, как достигнет правой границы моделируемого образца. Необходимость соблюдения этого условия обусловлена тем фактом, что отразившаяся от правой границы образца волна растяжения может тормозить пластический ударный фронт, выступая в роли волны разгрузки. С помощью построенной в работе зависимости максимальной глубины залегания пластических деформаций от вложенной энергии определено пороговое значение вложенной энергии, при превышении которого алюминий начинает пластически деформироваться.


Перов E.А., Жаховский В.В., Иногамов Н.А., Шепелев В.В., Фортова С.В., Долуденко А.Н.. Молекулярно-динамическое моделирование модификации алюминия лазерной ударной волной. Математическое моделирование и численные методы, 2023, № 4, с. 74-92



004.89 Моделирование и параметрическая идентификация аэродинамических характеристик самолета транспортной категории с использованием нейросетей в среде Тensorflow

Крееренко С. С. (ПАО «ТАНТК им. Г.М. Бериева»), Крееренко О. Д. (ПАО «ТАНТК им. Г.М. Бериева»)


doi: 10.18698/2309-3684-2024-3-8199


Рассматривается задача моделирования продольного движения самолета транспортной категории и параметрическая идентификация аэродинамических характеристик продольного движения: составляющих безразмерных коэффициентов аэродинамической подъемной силы и момента тангажа. Задача решается в классе модульных полуэмпирических динамических моделей, созданных объединением теоретического и нейросетевого моделирования. Работоспособность и практическая значимость моделей подтверждается результатами вычислительных экспериментов. Разработка нейросетевой модели продольного движения самолета выполнена на языке Python с использованием открытой программной библиотеки Tensorflow для машинного обучения и высокоуровневого API Keras в составе Tensorflow.


Крееренко С.С., Крееренко О.Д. Моделирование и параметрическая идентификация аэродинамических характеристик самолета транспортной категории с использованием нейросетей в среде Тensorflow. Математическое моделирование и численные методы, 2024, № 3, с. 81–99.



517 Моделирование нелинейных динамических и стационарных систем на основе интегро–функциональных рядов Вольтерры и различных классов квадратурных формул

Висам Махди Абас А. (ЮРГПУ (НПИ)), Арутюнян Р. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2021-2-6885


Рассматриваются вопросы анализа нелинейных динамических и стационарных систем на основе интегро–функциональных рядов Вольтерры и различных классов квадратурных формул. Используется математическая модель типа вход–выход, не учитывающая конкретную физическую природу динамического процесса, которую принято называть черным ящиком. Методы статьи применимы для основных вариантов интегрально–функционального разложения Вольтерры, в том числе для случая стационарных динамических систем, векторного входного сигнала. Дан пример задачи оптимизации на основе рассматриваемых интегростепенных рядов. Отмечено, при анализе и оптимизации нелинейных динамических систем методом интегро–функциональных рядов может возникнуть проблема вычисления многомерных интегралов. Рассмотрено применение для задач анализа нелинейных динамических и стационарных систем комбинированного метода, основанного на интегростепенном ряде Вольтерры и сеточных методах решения соответствующих одно- и многомерных интегральных уравнений. Рассматривается случай, когда известен некоторый набор реализаций входного и выходного сигналов, которые могут быть в принципе случайными процессами. По этим данным осуществляется отыскание ядер в разложении на основе решения соответствующего линейного многомерного интегрального уравнения Фредгольма I рода. Соответствующая задача относится к некорректно поставленным и для ее решения применен метод регуляризации по А.Н. Тихонову. В статье предлагается применять в данной задаче в случае больших размерностей метод квази Монте–Карло, характерный удовлетворительной сходимостью. Исследованы вычислительные качества в рассматриваемой задаче полустатистического метода решения интегральных уравнений большой размерности, метод квази Монте-–Карло, метод центральных прямоугольников (ячеек) и квадратурные формулы Гаусса–Лежандра. Рассматриваемые подходы позволяют расширить круг решаемых задач теории анализа и оптимизации систем, поскольку предложены методы, практически приемлемые при больших размерностях интегральных уравнений в условиях ограниченной информации о системе.


Абас Висам Махди Абас, Арутюнян Р.В. Моделирование нелинейных динамических и стационарных систем на основе интегро–функциональных рядов Вольтерры и различных классов квадратурных формул. Математическое моделирование и численные методы, 2021, № 2, с. 68–85.



004.942 Математическая модель архитектуры комплекса средств распределенного проектирования

Белов В. Ф. (АУ «Технопарк–Мордовия»/МГУ им. Н.П. Огарева), Гаврюшин С. С. (МГТУ им.Н.Э.Баумана), Занкин А. И. (МГУ им. Н.П. Огарева), Исайкин В. Ю. (МГУ им. Н.П. Огарева)


doi: 10.18698/2309-3684-2024-1-110123


Целью статьи является разработка метода распределения задач проектирования изделий машиностроения на заданном множестве исполнителей работ. При этом исполнители работ структурно и географически связаны со своими цифровыми платформами, образующими в совокупности экосистему проектирования. Разработана математическая модель, которая может успешно применяться для генерации архитектуры комплекса средств, покрывающих задачи инженерии требований, системной архитектуры и испытаний для каждого проекта, закрепленного за одной из платформ. В качестве метода моделирования обосновано применение сети Петри. Её реализация в виде программного приложения для PLM-системы цифровой платформы может существенно повысить качество управления проектами и их портфелями.


Белов В.Ф., Гаврюшин С.С., Занкин А.И., Исайкин В.Ю. Математическая модель архитектуры комплекса средств распределенного проектирования. Математическое моделирование и численные методы, 2024, № 1, с. 110–123.



621.822.2, 519.63 Численное исследование влияния класса вязкости смазки на работу упорного подшипника скольжения

Соколов Н. В. (АО НИИтурбокомпрессор им. В.Б. Шнеппа/Казанский национальный исследовательский технологический университет), Хадиев М. Б. (Казанский национальный исследовательский технологический университет), Федотов П. Е. (Казанский (Приволжский) федеральный университет/ООО «АСТ Поволжье»), Федотов Е. М. (ООО «АСТ Поволжье»)


doi: 10.18698/2309-3684-2023-1-92111


Представлены исследования влияния класса вязкости подаваемого масла ISO VG32 и ISO VG46 в широком диапазоне скоростей ротора и рабочих зазорах на локальные и интегральные характеристики упорного подшипника скольжения с неподвижными подушками компрессора. Исследования проведены с помощью программы расчетов Sm2Px3Txτ на основе результатов численных экспериментов подшипника. Программа построена численной реализацией нестационарной периодической термоупругогидродинамической (ПТУГД) математической модели работы упорного подшипника. Результаты исследований указывают на существенное влияние класса вязкости масла на основные характеристики и температурный режим работы упорного подшипника. При замене масла ISO VG46 на более жидкое ISO VG32 происходит заметное снижение температур подушек подшипника и потерь мощности. Однако уровень этого изменения определяется задаваемым рабочим зазором между вращающимся упорным диском и подушками подшипника. Проанализировано влияние класса вязкости масла и профиля рабочей поверхности на температурный режим работы подушки. Определяются величина и расположение максимальной температуры подушки упорного подшипника, а также возможность применения на практике эталонной точки 75/75 из API-670.


Соколов Н.В., Хадиев М.Б., Федотов П.Е., Федотов Е.М. Численное исследование влияния класса вязкости смазки на работу упорного подшипника скольжения. Математическое моделирование и численные методы, 2023, No 1, с. 92–111.



523.6+533.6 Моделирование Тунгусского явления 1908 года в рамках двух возможных гипотез

Андрущенко В. А. (Институт автоматизации проектирования РАН), Сызранова Н. Г. (Институт автоматизации проектирования РАН)


doi: 10.18698/2309-3684-2023-3-4261


В рамках актуальной проблемы кометно-астероидной опасности численно исследуются физические процессы, вызывающие разрушение и фрагментацию метеорных тел в атмосфере Земли, в данном случае Тунгусского болида. Число всевозможных версий и гипотез, связанных с Тунгусским явлением, чрезвычайно велико и продолжает возрастать, поэтому необходим анализ и обобщений всех известных фактов, присущих этому нестандартному катастрофическому событию, и только после этого приступить к выдвижению тех или иных гипотез, его объясняющих. На основе разработанной физико-математической модели, определяющей движение космических объектов естественного происхождения в атмосфере и их взаимодействия с ней, нами предложены две гипотезы, объясняющие процессы, происходящие при падении Тунгусского тела в 1908г. Первая гипотеза связана с дроблением тела, представляющего собой каменный метеороид, на большое количество фрагментов, которые разрушились в плотных слоях атмосферы под действием термических напряжений до размера мелкой пыли. Трудности выявления мелких частиц, выпавших именно в результате Тунгусского события, объясняются в основном следующим обстоятельством ˗ сроки начала первичных поисков следов падения тела были отдалены от момента события на целых двадцать лет, в течение которых на этой территории могло произойти весьма значительное количество других геофизических процессов. Вторая гипотеза связана с явлениями, возникающими при малых углах входа тела в атмосферу Земли. В этом случае происходит изменение баллистики его полета в атмосфере, заключающееся в переходе от режима падения к режиму подъема. Этот эффект приводит к реализации следующих возможных сценариев события: возврат тела обратно в космическое пространство при его остаточной скорости большей второй космической; переход тела на орбиту спутника Земли при остаточной скорости большей первой космической; при меньших значениях остаточной скорости тела возвращение его через некоторое время к режиму падения и достижение им земной поверхности на значительном расстоянии от предполагаемого места падения. Предложенные гипотезы объясняют, например, отсутствие материальных следов, в том числе и кратеров в ходе поисков останков Тунгусского болида в окрестности вывала леса


Андрущенко В.А., Сызранова Н.Г. Моделирование Тунгусского явления 1908 года в рамках двух возможных гипотез. Математическое моделирование и численные методы, 2023, № 3, с. 42–61.



521.2:521.3:521.61 Численное моделирование генерации второй гармоники ультракоротких лазерных импульсов в нелинейных фотонных кристаллах

Рузиев З. Д. (Ташкентский государственный технический университет), Сабиров О. И. (Ташкентский государственный технический университет), Корабоев К. А. (Ташкентский государственный технический университет), Сапаев У. К. (Ташкентский государственный технический университет)


doi: 10.18698/2309-3684-2022-1-314


Проведено численное моделирование процессов генерации второй гармоники ультракоротких лазерных импульсов в нелинейных фотонных кристаллах. Примененные численные методы основаны на приближении медленно-меняющихся амплитуд и однонаправленном приближении, применимом для упрощения волнового уравнения с нелинейной поляризацией в диспергирующей среде. При одинаковых условиях эксперимента проведено сравнение результатов этих приближений. Сравнительный анализ показывает, что вплоть до 10 фс длительности основного импульса оба приближенных метода описывают этот процесс преобразования частоты практически одинаково, но ниже 10 фс наблюдается расхождение результатов. Сравнение проводилось, главным образом по формированию временного профиля импульса второй гармоники и её эффективности. Представлена также методика получения временных профилей импульса второй гармоники при использовании однонаправленного приближения, где падающее поле используется целиком, как в спектральной, так и во временной области расчета. При использовании приближения медленно-меняющихся амплитуд учтено влияние дисперсии до третьего порядка малости.


Рузиев З.Дж., Собиров О.И., Корабоев К.А., Сапаев У.К. Численное моделирование генерации второй гармоники ультракоротких лазерных импульсов в нелинейных фотонных кристаллах. Математическое моделирование и численные методы, 2022, № 1, с. 3–14.



519.6 Агентная модель двух конкурирующих популяций с учетом структурности

Белотелов Н. В. (Вычислительный центр им. А.А. Дородницына ФИЦ ИУ РАН/МГТУ им.Н.Э.Баумана), Бровко А. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2022-3-7183


В статье описывается агентная имитационная модель двух популяций, конкурирующих за один ресурс. В модели считается, что особь погибает, если её масса-энергия становится неположительной. Предполагается, что особи каждой из рассматриваемых популяций могут образовывать стаи, это позволяет популяциям повышать свою конкурентоспособность. В модели это формализуется посредством возможности организовывать сети, связывающие особей одного вида. При этом особи могут образовывать лишь определенное количество связей с соседями. В модели для описания этого вводится понятие «валентности». Предполагается, что внутри каждой сети происходит мгновенное перераспределение ресурса по всем членам сети, имеющегося у каждого членом стаи. В статье помимо модели описана структура программы, с помощью которой проводились имитационные эксперименты. В результате проведенных имитационных экспериментов было получено следующее. Если ресурс высокопродуктивный, то в процессе конкурентного взаимодействия побеждает популяция, агенты, которой имеют большую «валентность». А в случае низко продуктивного ресурса победу в конкурентном взаимодействии одерживают особи популяции, обладающей меньшей «валентностью». Это связано с тем, что более сложные структуры требуют большей энергии поддержания стаи.


Белотелов Н.В., Бровко А.В. Агентная модель двух конкурирующих популяций с учетом их структурности. Математическое моделирование и численные методы, 2022, № 3, с. 71–83.



<< 2 >>