Рубрика: "1.2.2. Математическое моделирование, численные методы и комплексы программ (технические науки)"



521.19 Моделирование пертурбационных оболочек для гравитационных маневров в Солнечной системе

Боровин Г. К. (Институт прикладной математики им. М.В. Келдыша РАН), Голубев Ю. Ф. (Институт прикладной математики им. М.В. Келдыша РАН), Грушевский А. В. (Институт прикладной математики им. М.В. Келдыша РАН), Тучин А. Г. (Институт прикладной математики им. М.В. Келдыша РАН)


doi: 10.18698/2309-3684-2023-4-6473


Одним из видов гравитационного рассеяния в Солнечной системе в рамках модели круговой ограниченной задачи трех тел (CR3BP) являются гравитационные маневры «частиц незначительной массы» (космические аппараты, астероиды, кометы и др.). Для их описания полезна физическая аналогия с рассеянием пучков заряженных альфа-частиц в кулоновском поле. Однако, в отличие от рассеяния заряженных частиц, существуют внешние ограничения на возможность выполнения гравитационных маневров, связанные с ограниченным размером сферы влияния планеты. В то же время из литературы по CR3BP известны внутренние ограничения на возможность исполнения гравитационных маневров, оцениваемые эффективными радиусами планет (включая гравитационный захват планетой, попадающей в нее). Они зависят от асимптотической скорости частицы относительно планеты. По понятным причинам их влияние лишает возможности эффективного использования гравитационных маневров. В работе представлены обобщенные оценки размеров околопланетных областей (плоских вращающихся синхронно с малым телом «пертурбационных колец» или «пертурбационных оболочек» в трехмерном случае), попадание в которые является необходимым условием реализации гравитационных маневров. Детальный анализ показывает, что Нептун и Сатурн имеют характерные оболочки — полые сферы возмущений самых больших размеров в Солнечной системе, а Юпитер занимает в этом списке лишь четвертое место.


Боровин Г.К., Голубев Ю.Ф., Грушевский А.В., Тучин А.Г. Моделирование пертурбационных оболочек для гравитационных маневров в Солнечной системе.Математическое моделирование и численные методы, 2023, № 4, с. 64–73.



519.6 Агентная модель двух конкурирующих популяций с учетом структурности

Белотелов Н. В. (Вычислительный центр им. А.А. Дородницына ФИЦ ИУ РАН/МГТУ им.Н.Э.Баумана), Бровко А. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2022-3-7183


В статье описывается агентная имитационная модель двух популяций, конкурирующих за один ресурс. В модели считается, что особь погибает, если её масса-энергия становится неположительной. Предполагается, что особи каждой из рассматриваемых популяций могут образовывать стаи, это позволяет популяциям повышать свою конкурентоспособность. В модели это формализуется посредством возможности организовывать сети, связывающие особей одного вида. При этом особи могут образовывать лишь определенное количество связей с соседями. В модели для описания этого вводится понятие «валентности». Предполагается, что внутри каждой сети происходит мгновенное перераспределение ресурса по всем членам сети, имеющегося у каждого членом стаи. В статье помимо модели описана структура программы, с помощью которой проводились имитационные эксперименты. В результате проведенных имитационных экспериментов было получено следующее. Если ресурс высокопродуктивный, то в процессе конкурентного взаимодействия побеждает популяция, агенты, которой имеют большую «валентность». А в случае низко продуктивного ресурса победу в конкурентном взаимодействии одерживают особи популяции, обладающей меньшей «валентностью». Это связано с тем, что более сложные структуры требуют большей энергии поддержания стаи.


Белотелов Н.В., Бровко А.В. Агентная модель двух конкурирующих популяций с учетом их структурности. Математическое моделирование и численные методы, 2022, № 3, с. 71–83.



519.6 Агентная модель культурных взаимодействий на неметризуемых хаусдорфовых пространствах

Белотелов Н. В. (Вычислительный центр им. А.А. Дородницына ФИЦ ИУ РАН/МГТУ им.Н.Э.Баумана), Павлов С. А. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2021-3-105119


Необходимость разработки формализованных компьютерно-ориентированных подходов к проведению междисциплинарных исследований межкультурных взаимодействий является актуальной задачей. В статье описывается подход к разработке агентных моделей межкультурных взаимодействий, основанный на использовании неметризуемых хаусдорфовых пространств с использованием генетических алгоритмов для введения динамических изменений в рассматриваемой структуре культурных агентов. В статье рассматривается прототип агентной модели, в которой состояние агентов описывается в хаусдорфовых пространствах. С помощью выбора опорных точек для каждого агента строится функция Урысона, которая позволяет вводить предпочтения агентов. Далее с помощью технологии генетических алгоритмов, удается получить тактовую динамику изменения всей системы агентов. В статье приводится описание некоторых имитационных экспериментов. Обсуждаются возможные перспективы развития данного подхода.


Белотелов Н.В, Павлов С.А. Агентная модель культурных взаимодействий на неметризуемых хаусдорфовых пространствах. Математическое моделирование и численные методы, 2021, № 3, с. 105–119.



338.001.36 Математическая модель формирования цепочек поставок сырья с товарно-сырьевой биржи в условиях риска с опорой на траекторию прибыли за предыдущие периоды

Рогулин Р. С. (ФГБОУ ВО «ВВГУ»)


doi: 10.18698/2309-3684-2023-2-129154


Формирование цепочки поставок сырья тесно связано с производственными проблемами деревообрабатывающих предприятий. Построение цепочек поставок сырья и оптимальный расчет ежедневного производства были актуальными темами с начала второй промышленной революции. В данной статье рассматривается предприятие Приморского края деревообрабатывающей промышленности, у которого нет делян в аренде. Цель работы состоит в том, чтобы решить проблему построения цепочки поставок сырья с учетом ежедневной загрузки производственных площадей и поиску оптимального решения. Источником сырья выступает товарно-сырьевая биржа, где лоты появляются ежедневно в случайном порядке в разных регионах добычи. В научной литературе существует множество способов расчета наилучшего значения прибыли с учетом множества ограничений, но в них не учтены многие важные для деревообрабатывающих предприятий особенности. Исходя из обзора научной литературы в данной статье представлена математическая модель, которая выступает в роли механизма по принятию решений в каждый отдельный день, и она отличается тем, что может учитывать коэффициент полезного объема сырья, который дойдет до склада и время в пути. Тестирование модели проводилось на данных Российской товарно-сырьевой биржи и компании в Приморском крае. Результатом тестирования модели является вычисленная оптимальная траектория прибыли для каждого набора данных об объемах сырья, времени лотов в пути, а также множество важных показателей для любого производства: объем прибыли, объем производства товаров. Анализ полеченных решений показал, что существуют сложности в планировании цепочек поставок и объемов производства. Проанализированы регионы в качестве источников сырья, из каких регионов и когда стоит закупать сырье. Приведены недостатки и положительные стороны математической модели.


Рогулин Р.С. Математическая модель формирования цепочек поставок сырья с товарно-сырьевой биржи в условиях риска с опорой на траекторию прибыли за предыдущие периоды. Математическое моделирование и численные методы, 2023,№ 2, с. 129–154.



519.8 Диффузионная модель эволюции кластера в металлическом расплаве жаропрочного никелевого сплава

Тягунов А. Г. (Уральский Федеральный Университет), Зейде К. М. (Universidad Politècnica Salesiana/University of Genoa), Мильдер О. Б. (Уральский Федеральный Университет), Тарасов Д. А. (Уральский Федеральный Университет)


doi: 10.18698/2309-3684-2023-2-332


В работе производится построение математической модели термо-временной эволюции кластера в расплаве жаропрочного никелевого сплава ЖС6У. Формулируется начально-краевая задача с движущейся границей, для решения которой применяется численное моделирование методом трассировки траектории частиц, а для описания эволюционных процессов используется ряд классических физических теорий. Для проверки точности модели привлекается физический эксперимент построения политерм и изотерм электросопротивления рассматриваемого сплава. Подтверждено, что модель броуновской диффузии и теория проводимости Друде применимы для описания, как временной, так и температурной эволюции кластера. Так же оправдал себя подход к моделированию на основе «твердых шаров». По результатам моделирования, во временном диапазоне от 1690 до 1752 К количество частиц в составе кластера меняется от 5000 до 2000, средняя динамическая вязкость кластера изменяется от 3 до 2 *1010 Па*с, однако предполагается, что центральная часть существенно плотнее периферии, радиус кластера изменяется от 24 до 18, радиус свободной зоны вокруг кластера – от 56 до 43. Определены направления дальнейшего развития модели.


Тягунов А.Г., Зейде К.М., Мильдер О.Б., Тарасов Д.А. Диффузионная модель эволюции кластера в металлическом расплаве жаропрочного никелевого сплава. Математическое моделирование и численные методы, 2023, № 2, с. 3–32.



519.6:629.7.02 Применение генетического алгоритма в задаче моделирования и оптимизации пневмогидравлической системы синхронизации исполнительных органов

Бушуев А. Ю. (МГТУ им.Н.Э.Баумана), Резников А. О. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2021-3-6273


Построена модель генетического алгоритма с бинарным кодированием с независимой селекцией Шеффера, позволяющая производить поиск глобального оптимума по нескольким критериям без их скаляризации. При расчетах учитывается область всех возможных перемещений исполнительных органов в условиях неопределённых внешних воздействий в некотором, заранее заданном, диапазоне. Разработан алгоритм, позволяющий хранить промежуточные результаты для устранения проблемы большого количества повторяющихся расчетов в ходе работы эволюционного алгоритма, что позволило снизить время вычислений. Эффективность работы оптимизационного алгоритма демонстрируется на примере решения модельной задачи.


Бушуев А.Ю., Резников А.О. Применение генетического алгоритма в задаче моделирования и оптимизации пневмогидравлической системы синхронизации исполнительных органов. Математическое моделирование и численные методы, 2021, № 3, с. 62–73.



517 Моделирование нелинейных динамических и стационарных систем на основе интегро–функциональных рядов Вольтерры и различных классов квадратурных формул

Висам Махди Абас А. (ЮРГПУ (НПИ)), Арутюнян Р. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2021-2-6885


Рассматриваются вопросы анализа нелинейных динамических и стационарных систем на основе интегро–функциональных рядов Вольтерры и различных классов квадратурных формул. Используется математическая модель типа вход–выход, не учитывающая конкретную физическую природу динамического процесса, которую принято называть черным ящиком. Методы статьи применимы для основных вариантов интегрально–функционального разложения Вольтерры, в том числе для случая стационарных динамических систем, векторного входного сигнала. Дан пример задачи оптимизации на основе рассматриваемых интегростепенных рядов. Отмечено, при анализе и оптимизации нелинейных динамических систем методом интегро–функциональных рядов может возникнуть проблема вычисления многомерных интегралов. Рассмотрено применение для задач анализа нелинейных динамических и стационарных систем комбинированного метода, основанного на интегростепенном ряде Вольтерры и сеточных методах решения соответствующих одно- и многомерных интегральных уравнений. Рассматривается случай, когда известен некоторый набор реализаций входного и выходного сигналов, которые могут быть в принципе случайными процессами. По этим данным осуществляется отыскание ядер в разложении на основе решения соответствующего линейного многомерного интегрального уравнения Фредгольма I рода. Соответствующая задача относится к некорректно поставленным и для ее решения применен метод регуляризации по А.Н. Тихонову. В статье предлагается применять в данной задаче в случае больших размерностей метод квази Монте–Карло, характерный удовлетворительной сходимостью. Исследованы вычислительные качества в рассматриваемой задаче полустатистического метода решения интегральных уравнений большой размерности, метод квази Монте-–Карло, метод центральных прямоугольников (ячеек) и квадратурные формулы Гаусса–Лежандра. Рассматриваемые подходы позволяют расширить круг решаемых задач теории анализа и оптимизации систем, поскольку предложены методы, практически приемлемые при больших размерностях интегральных уравнений в условиях ограниченной информации о системе.


Абас Висам Махди Абас, Арутюнян Р.В. Моделирование нелинейных динамических и стационарных систем на основе интегро–функциональных рядов Вольтерры и различных классов квадратурных формул. Математическое моделирование и численные методы, 2021, № 2, с. 68–85.



519.2.214 Математическое моделирование и сравнительный анализ численных методов решения задачи непрерывно-дискретной фильтрации случайных процессов в реальном времени

Валишин А. А. (МГТУ им.Н.Э.Баумана), Запривода А. В. (МГТУ им.Н.Э.Баумана), Клонов А. С. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2024-1-93109


При развитии методов прогнозирования существенное значение приобретает исключение из исходной информации и исследуемых процессов случайных эффектов. Эти эффекты связаны не только с невозможностью учета всех факторов, но и с тем, что часть из них нередко совсем не принимаются во внимание. Не стоит забывать и про случайные погрешности измерений. В прогнозируемых величинах вследствие указанных эффектов создается некий случайный фон или «шум». Фильтрация (исключение) шумов должна, естественно, повысить достоверность и оправдываемость прогнозов. В статье рассмотрены принципы фильтрации данных в масштабе реального времени. Приводится постановка задачи, а также основные критерии оценок, которые должны выполняться для получения удовлетворительного результата. Разбирается принцип работы двух наиболее распространённых видов фильтров – абсолютно оптимальных и условно оптимальных, описываются их достоинства и недостатки. Рассмотрено применение фильтров Калмана и Пугачева к модели с двумя датчиками. Представлены некоторые выводы и рекомендации о том, в каких случаях лучше использовать тот или иной фильтр.


Валишин А.А., Запривода А.В., Клонов А.С. Математическое моделирование и сравнительный анализ численных методов решения задачи непрерывнодискретной фильтрации случайных процессов в реальном времени. Математическое моделирование и численные методы, 2024, № 1, с. 93–109.



519.654 О моделировании циклических процессов решениями кусочно-линейных разностных уравнений с постоянными коэффициентами по экспериментальным данным в виде временных рядов

Смирнов В. Ю. (ГБУЗ МО МОНИКИ им. М. Ф. Владимирского/ООО Азфорус), Кузнецова А. В. (ИБХФ РАН)


doi: 10.18698/2309-3684-2022-4-6380


В работе рассмотрено моделирование циклических процессов реального макромира набором двух (или большего числа) систем линейных разностных уравнений с постоянными коэффициентами. Показано, что из любого начального состояния система может быть переведена в заданное конечное состояние за заданное число шагов и, как следствие — получены условия существования циклического решения на плоскости или в пространстве любой размерности. Для циклического решения интегральные кривые систем состыковываются по непрерывности. Переключение с одной системы уравнений на другую происходит при достижении интегральными кривыми границ на фазовой плоскости (пространстве). Проведен анализ скорости сходимости таких решений к устойчивому циклу. Показана существенная зависимость хода интегральных кривых (траекторий) от начальных условий. Модель в виде авторегрессий связана с экспериментальными данными — временными рядами и аппроксимирует их по критерию минимизации среднеквадратичного отклонения. Предложенные модели могут также применяться к задачам достижения заданных значений процессов (технических, экономических) в заданный момент врем


Смирнов В.Ю., Кузнецова А.В. О моделировании циклических процессов решениями кусочно-линейных разностных уравнений с постоянными коэффициентами по экспериментальным данным в виде временных рядов. Математическое моделирование и численные методы, 2022, № 4, с. 63–80.



<< 2 >>