Рубрика: "1.2.2. Математическое моделирование, численные методы и комплексы программ (технические науки)"



004.855.5 Нейросетевые методы решения задачи кредитного скоринга

Кадиев А. Д. (МГТУ им.Н.Э.Баумана), Чибисова А. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2022-4-8192


Продемонстрирован математический вывод представленной модели нейронной сети. Сведение задачи классификации к задаче оптимизации. Произведен разведывательный анализ данных, а также их предобработка для дальнейшего использования в обучении алгоритмов классификации. Были спроектированы архитектуры нейронных сетей, зависящих от функции активации, количества скрытых слоев нейронной сети и количества нейронов в скрытых слоях. Обучено более десяти нейронных сетей, решающих поставленную задачу кредитного скоринга. Произведен расчет времени обучения нейронных сетей. Представлено решение задачи при помощи классических алгоритмов машинного обучения. Можно было заметить, что стандартное отклонение accuracy и ROC AUC для нейронных сетей больше, чем у случайного леса. Это происходит из-за того, что мы выбираем начальные веса случайным образом и градиенты считаем не на всей выборке, а на малых частях, что добавляет некоторую погрешность при обучении. Но эти отклонения были не только в худшую сторону. В лучших ситуациях, по обеим метрикам, нейронные сети показывали результат хуже всего на пару процентов. Произведен анализ резульатов. Сравнительный анализ показывает, что нейронные сети имеют лучшее качество классификации, чем классические алгоритмы машинного обучения, а также, что нейронные сети имеют меньшее время обучения, чем классические алгоритмы машинного обучения. Представлены графики и таблицы, отображающие имеемые результаты.


Кадиев А.Д., Чибисова А.В. Нейросетевые методы решения задачи кредитного скоринга. Математическое моделирование и численные методы, 2022, № 4, с. 81–92.



519.8 «Смешанная» модель противоборства многочисленных группировок при линейных зависимостях от времени эффективных скоростей воздействий единицами сторон

Чуев В. Ю. (МГТУ им.Н.Э.Баумана), Дубограй И. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2022-2-102113


С использованием метода динамики средних разработана «смешанная» модель противоборства многочисленных группировок при линейных зависимостях от времени эффективных скоростей нанесения воздействий единицами сторон. Построен алгоритм, позволяющий исследовать ход протекания процесса и вычислить его основные показатели. Установлено, что использование моделей с постоянными эффективными скоростями нанесения воздействий во многих случаях приводит к значительным ошибкам при вычислении основных показателей процесса. Исследовано влияние упреждающего воздействия одной из противоборствующих сторон на ход его протекания и окончательный итог.


Чуев В.Ю., Дубограй И.В. «Смешанная» модель противоборства многочисленных группировок при линейных зависимостях от времени эффективных скоростей воздействий единицами сторон. Математическое моделирование и численные методы, 2022, № 2, с. 104–115



519.6 Численное моделирование нестационарной задачи оптимального размещения источников тепла минимальной мощности в однородной среде

Хайиткулов Б. Х. (Национальный университет Узбекистана)


doi: 10.18698/2309-3684-2024-1-5566


Данная работа посвящена численному решению нестационарной задачи оптимального размещения источников тепла минимальной мощности. Постановка задачи требует одновременного выполнения двух условий. Первое условие ― обеспечить нахождение температуры в пределе минимальных и максимальных температур за счет оптимального размещения источников тепла с минимальной мощностью в прямоугольнике. Второе условие заключается в том, чтобы суммарная мощность источников тепла, используемых для обогрева, была минимальной. Эта задача изучалась в стационарных условиях в работах других учёных. Однако в нестационарном случае задача не рассматривалась. Поскольку найти непрерывное решение краевой задачи сложно, то ищем численное решение задачи. Трудно найти интегральный оператор с непрерывным ядром (функция Грина). Найдено численное значение функции Грина в виде матрицы. Предложен новый алгоритм численного решения ностационарной задачи оптимального управления размещением источников тепла с минимальной мощностью в процессах, описываемых дифференциальными уравнениями с частными производными параболического типа. Предложена новая методика численного решения. Построена математическая и численная модель процессов, описываемых уравнением теплопроводности с постоянными коэффициентами, заданными для первой краевой задачи. Краевая задача изучается для двумерного случая. Для численного решения задачи использовалась неявная конечно-разностная схема. По этой схеме была создана система разностных уравнений. Сформированная система разностных уравнений приведена к задаче линейного программирования. Задача линейного программирования решается с помощью М-метода. При каждом значении времени решается задача линейного программирования. Предложен новый подход к численному решению задач. Приведена общая блок-схема алгоритма решения нестационарной задачи оптимального управления размещением источников тепла с минимальной мощностью. Разработан алгоритм и программное обеспечение для численного решения задачи. Приведено краткое описание программного обеспечения. На конкретных примерах показано, что численное решение краевой задачи находится в заданных пределах, сумма оптимально размещенных источников тепла с минимальной мощностью дает минимум функционалу. Визуализированы результаты вычислительного эксперимента.


Хайиткулов Б. Х. Численное моделирование нестационарной задачи оптимального размещения источников тепла минимальной мощности в однородной среде. Математическое моделирование и численные методы, 2024, № 1, с. 55–66.



519.2.214 Математическое моделирование и сравнительный анализ численных методов решения задачи непрерывно-дискретной фильтрации случайных процессов в реальном времени

Валишин А. А. (МГТУ им.Н.Э.Баумана), Запривода А. В. (МГТУ им.Н.Э.Баумана), Клонов А. С. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2024-1-93109


При развитии методов прогнозирования существенное значение приобретает исключение из исходной информации и исследуемых процессов случайных эффектов. Эти эффекты связаны не только с невозможностью учета всех факторов, но и с тем, что часть из них нередко совсем не принимаются во внимание. Не стоит забывать и про случайные погрешности измерений. В прогнозируемых величинах вследствие указанных эффектов создается некий случайный фон или «шум». Фильтрация (исключение) шумов должна, естественно, повысить достоверность и оправдываемость прогнозов. В статье рассмотрены принципы фильтрации данных в масштабе реального времени. Приводится постановка задачи, а также основные критерии оценок, которые должны выполняться для получения удовлетворительного результата. Разбирается принцип работы двух наиболее распространённых видов фильтров – абсолютно оптимальных и условно оптимальных, описываются их достоинства и недостатки. Рассмотрено применение фильтров Калмана и Пугачева к модели с двумя датчиками. Представлены некоторые выводы и рекомендации о том, в каких случаях лучше использовать тот или иной фильтр.


Валишин А.А., Запривода А.В., Клонов А.С. Математическое моделирование и сравнительный анализ численных методов решения задачи непрерывнодискретной фильтрации случайных процессов в реальном времени. Математическое моделирование и численные методы, 2024, № 1, с. 93–109.



519.2 Сравнительный анализ методов моделирования и прогнозирования временных рядов на основе теории фрактального броуновского движения

Облакова Т. В. (МГТУ им.Н.Э.Баумана), Алексеев Д. С. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2022-4-4862


Работа посвящена сравнению различных методов моделирования и применения фрактального броуновского движения в задачах анализа временных рядов. Реализованы программные модули, генерирующие траектории фрактального броуновского движения с использованием методов стохастического представления, разложения Холецкого и Дэвиса-Харта. Проведено сравнение алгоритмов с точки зрения их сложности и качества получаемых траекторий. Показатель Хёрста оценивался методами Минковского и R/S анализа. Предложена и реализована аппроксимация временных рядов фрактальным броуновским движением с помощью степенной функции для последующего применения алгоритма линейного прогнозирования, основанного на теореме о нормальной корреляции. Установлено, что с помощью представленной аппроксимации удается добиться удовлетворительного прогноза валютного курса на несколько значений вперед.


Облакова Т.В., Алексеев Д.С. Сравнительный анализ методов моделирования и прогнозирования временных рядов на основе теории фрактального броуновского движения. Математическое моделирование и численные методы, 2022, № 4, с. 48–62



338.001.36 Математическая модель формирования цепочек поставок сырья с товарно-сырьевой биржи в условиях риска с опорой на траекторию прибыли за предыдущие периоды

Рогулин Р. С. (ФГБОУ ВО «ВВГУ»)


doi: 10.18698/2309-3684-2023-2-129154


Формирование цепочки поставок сырья тесно связано с производственными проблемами деревообрабатывающих предприятий. Построение цепочек поставок сырья и оптимальный расчет ежедневного производства были актуальными темами с начала второй промышленной революции. В данной статье рассматривается предприятие Приморского края деревообрабатывающей промышленности, у которого нет делян в аренде. Цель работы состоит в том, чтобы решить проблему построения цепочки поставок сырья с учетом ежедневной загрузки производственных площадей и поиску оптимального решения. Источником сырья выступает товарно-сырьевая биржа, где лоты появляются ежедневно в случайном порядке в разных регионах добычи. В научной литературе существует множество способов расчета наилучшего значения прибыли с учетом множества ограничений, но в них не учтены многие важные для деревообрабатывающих предприятий особенности. Исходя из обзора научной литературы в данной статье представлена математическая модель, которая выступает в роли механизма по принятию решений в каждый отдельный день, и она отличается тем, что может учитывать коэффициент полезного объема сырья, который дойдет до склада и время в пути. Тестирование модели проводилось на данных Российской товарно-сырьевой биржи и компании в Приморском крае. Результатом тестирования модели является вычисленная оптимальная траектория прибыли для каждого набора данных об объемах сырья, времени лотов в пути, а также множество важных показателей для любого производства: объем прибыли, объем производства товаров. Анализ полеченных решений показал, что существуют сложности в планировании цепочек поставок и объемов производства. Проанализированы регионы в качестве источников сырья, из каких регионов и когда стоит закупать сырье. Приведены недостатки и положительные стороны математической модели.


Рогулин Р.С. Математическая модель формирования цепочек поставок сырья с товарно-сырьевой биржи в условиях риска с опорой на траекторию прибыли за предыдущие периоды. Математическое моделирование и численные методы, 2023,№ 2, с. 129–154.



004.942 Математическая модель архитектуры комплекса средств распределенного проектирования

Белов В. Ф. (АУ «Технопарк–Мордовия»/МГУ им. Н.П. Огарева), Гаврюшин С. С. (МГТУ им.Н.Э.Баумана), Занкин А. И. (МГУ им. Н.П. Огарева), Исайкин В. Ю. (МГУ им. Н.П. Огарева)


doi: 10.18698/2309-3684-2024-1-110123


Целью статьи является разработка метода распределения задач проектирования изделий машиностроения на заданном множестве исполнителей работ. При этом исполнители работ структурно и географически связаны со своими цифровыми платформами, образующими в совокупности экосистему проектирования. Разработана математическая модель, которая может успешно применяться для генерации архитектуры комплекса средств, покрывающих задачи инженерии требований, системной архитектуры и испытаний для каждого проекта, закрепленного за одной из платформ. В качестве метода моделирования обосновано применение сети Петри. Её реализация в виде программного приложения для PLM-системы цифровой платформы может существенно повысить качество управления проектами и их портфелями.


Белов В.Ф., Гаврюшин С.С., Занкин А.И., Исайкин В.Ю. Математическая модель архитектуры комплекса средств распределенного проектирования. Математическое моделирование и численные методы, 2024, № 1, с. 110–123.



519.6 Агентная модель двух конкурирующих популяций с учетом структурности

Белотелов Н. В. (Вычислительный центр им. А.А. Дородницына ФИЦ ИУ РАН/МГТУ им.Н.Э.Баумана), Бровко А. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2022-3-7183


В статье описывается агентная имитационная модель двух популяций, конкурирующих за один ресурс. В модели считается, что особь погибает, если её масса-энергия становится неположительной. Предполагается, что особи каждой из рассматриваемых популяций могут образовывать стаи, это позволяет популяциям повышать свою конкурентоспособность. В модели это формализуется посредством возможности организовывать сети, связывающие особей одного вида. При этом особи могут образовывать лишь определенное количество связей с соседями. В модели для описания этого вводится понятие «валентности». Предполагается, что внутри каждой сети происходит мгновенное перераспределение ресурса по всем членам сети, имеющегося у каждого членом стаи. В статье помимо модели описана структура программы, с помощью которой проводились имитационные эксперименты. В результате проведенных имитационных экспериментов было получено следующее. Если ресурс высокопродуктивный, то в процессе конкурентного взаимодействия побеждает популяция, агенты, которой имеют большую «валентность». А в случае низко продуктивного ресурса победу в конкурентном взаимодействии одерживают особи популяции, обладающей меньшей «валентностью». Это связано с тем, что более сложные структуры требуют большей энергии поддержания стаи.


Белотелов Н.В., Бровко А.В. Агентная модель двух конкурирующих популяций с учетом их структурности. Математическое моделирование и численные методы, 2022, № 3, с. 71–83.



519.6 Математическое моделирование нестационарной задачи конвекции–диффузии об оптимальном выборе местоположения источников тепла

Хайиткулов Б. Х. (Национальный университет Узбекистана)


doi: 10.18698/2309-3684-2023-1-3242


Данная работа посвящена численному решению нестационарной задачи оптимального размещения источников тепла минимальной мощности. Постановка задачи требует одновременного выполнения двух условий. Первое условие — обеспечить нахождение температуры в пределе минимальных и максимальных температур за счет оптимального размещения источников тепла с минимальной мощностью в параллелепипеде. Второе условие заключается в том, чтобы суммарная мощность источников тепла, используемых для обогрева, была минимальной. Эта задача изучалась в стационарных условиях в работах других учёных. Однако в нестационарном случае задача не рассматривалось. Поскольку найти непрерывное решение краевой задачи сложно, то ищем численное решение задачи. Трудно найти интегральный оператор с непрерывным ядром (функция Грина). Найдено численное значение функции Грина в виде матрицы. Предложен новый алгоритм численного решения нестационарной задачи оптимального управления размещением источников тепла с минимальной мощностью в процессах, описываемых дифференциальными уравнениями с частными производными параболического типа. Предложена новая методика численного решения. Построена математическая и численная модель процессов, описываемых уравнением конвекции-диффузии, заданным для первой краевой задачи. Краевая задача изучается для трёхмерного случая. Для численного решения задачи использовалась неявная конечно-разностная схема. По этой схеме была создана система разностных уравнений. Сформированная система разностных уравнений приведена к задаче линейного программирования. Задача линейного программирования решается с помощью М-метода. При каждом значении времени решается задача линейного программирования. Предложен новый подход к численному решению задач. Приведена общая блок-схема алгоритма решения нестационарной задачи оптимального управления размещением источников тепла с минимальной мощностью. Разработан алгоритм и программное обеспечение для численного решения задачи. Приведено краткое описание программного обеспечения. На конкретных примерах показано, что численное решение краевой задачи находится в заданных пределах, сумма оптимально размещенных источников тепла с минимальной мощностью дает минимум функционалу. Визуализированы результаты вычислительного эксперимента.


Хайиткулов Б.Х. Математическое моделирование нестационарной задачи конвекции–диффузии об оптимальном выборе местоположения источников тепла. Математическое моделирование и численные методы, 2023, No 1, с. 32–42.



<< 2 >>