521.2:521.3:521.61 Approximate methods for studying the second harmonic generation of ultrashort laser pulses in nonlinear photonic crystals

Ruziev Z. J. (Ташкентский государственный технический университет), Sobirov O. I. (Ташкентский государственный технический университет), Koraboev K. A. (Ташкентский государственный технический университет), Sapaev U. K. (Ташкентский государственный технический университет)

MAXWELL EQUATIONS, NONLINEAR OPTICS, APPROXIMATION OF SLOWLY VARYING AMPLITUDES, UNIDIRECTIONAL APPROXIMATION, SECOND HARMONIC GENERATION, LITHIUM NIOBATE


doi: 10.18698/2309-3684-2022-1-314


Second harmonic generation of ultrashort laser pulses in nonlinear photonic crystals is investigated by numerical methods based on the approximation of slowly varying amplitudes and a unidirectional approximation, applicable to simplify the wave equation with nonlinear polarization in a dispersive medium. Under the same experimental conditions, the results of these approximations are compared. Comparative analysis shows that up to 10 fs of the main pulse duration, both approximate methods describe this process of frequency conversion in almost the same way, but below 10 fs, there is a discrepancy between their results. Mainly, the formation of the temporal profile of the second harmonic pulse and its efficiency are compared. A method for obtaining time profiles of the second harmonic pulse using a unidirectional approximation where the incident field is used entirely in both the spectral and time domains of the calculation is also shown. The effect of dispersion up to the third order of smallness is taken into account, during the use of the approximation of slowly varying amplitudes.


Morgner U., Kärtner F.X., Cho S.H., Chen Y., Haus H.A., Fujimoto J.G., Ippen E.P. Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser. Optics Letters, 1999, vol. 24, no. 6, pp. 411–413.
Daido H., Nishiuchi M., Pirozhkov A.S. Review of laser-driven ion sources and their applications. Reports on Progress in Physics, 2012, vol. 75, no. 5, art. no. 056401.
Rizvi N.H. Femtosecond laser micromachining: Current status and applications. RIKEN Review, 2003, no. 50, pp. 107–112.
Jankowski M., Langrock C., Desiatov B., Marandi A., Wang C., Zhang M., Phillips C.R., Lončar M., Fejer M.M. Ultrabroadband nonlinear optics in nanophotonic periodically poled lithium niobate waveguides. Optica, 2020, vol. 7, no. 1, pp. 40–46.
Tanzilli S., De Riedmatten H., Tittel W., Zbinden H., Baldi P., De Micheli M., Gisin N. Highly efficient photon-pair source using periodically poled lithium niobate waveguide. Electronics Letters, 2001, vol. 37, no. 1, pp. 26–28.
Miller G.D., Batchko R.G., Tulloch W.M., Weise D.R., Fejer M.M., Byer R.L. 42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate. Optics letters, 1997, vol. 22, no. 24, pp. 1834–1836.
Akhmanov S.A., Vyslukh V.A., Chirkin A.S. Optika femtosekundnyh lazernyh impul'sov [Optics of femtosecond laser pulses]. Moscow, Nauka Publ., 1988, 308 p.
Dmitriev V.G., Tarasov L.V. Prikladnaya nelinejnaya optika [Applied nonlinear optics]. Moscow, Fizmatlit Publ., 2004, 512 p.
Boyd R. Nonlinear Optics. Academic Press, 2020, 634 p.
Husakou A.V., Herrmann J. Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers. Physical Review Letters, 2001, vol. 87, iss. 20, pp. 203901-1–203901-4.
Couairon A., Brambilla E., Corti T., Majus D., de J. Ramírez-Góngora O., Kolesik M. Practitioner's guide to laser pulse propagation models and simulation. European Physical Journal: Special Topics, 2011, vol. 199, iss. 1, pp. 5–76.
Mlejnek M., Wright E.M., Moloney J.V. Femtosecond pulse propagation in argon: A pressure dependence study. Physical Review E – Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1998, vol. 58, no. 4, pp. 4903–4910.
Olimov A.N., Ruziev Z.J., Yusupov D.B., Sapaev U.K. Frequency Doubling Of Femtosecond Laser Pulses In Nonlinear Photonic Crystals With Account Of High-Order Dispersion. Journal of Russian Laser Research, 2019, vol. 40, no. 3, pp. 280–287.
Agraval G.P., Mamyshev P.V., Chernikov S.V. Nelinejnaya volokonnaya optika[Nonlinear fiber optics]. Moscow, Mir Publ., 1996, 323 p.
Nikogosyan D.N. Nonlinear Optical Crystals: A Complete Survey. New York, Springer New York, 2005, 428 p.
Paschotta R. Titanium–sapphire Lasers. RP Photonics Encyclopedia, URL: https://www.rp-photonics.com/titanium_sapphire_lasers.html (date of application: 15.07.2021)
Dalgarno A., Kingston A.E. The refractive indices and Verdet constants of the inert gases. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1960, vol. 259, pp. 424–43.
Kulagin I.A., Sapaev U.K., Usmanov T., Uzakov A.A., Yusupov D.B. Nonstationary frequency doubling in periodically-poled nonlinear crystals in the presence of self-action effects. Journal of Russian Laser Research, 2007, vol. 28, no. 3, pp. 279–287.


Рузиев З.Дж., Собиров О.И., Корабоев К.А., Сапаев У.К. Численное моделирование генерации второй гармоники ультракоротких лазерных импульсов в нелинейных фотонных кристаллах. Математическое моделирование и численные методы, 2022, № 1, с. 3–14.


Работа выполнена при частичной поддержке грантов Uzb-Ind-2020-96 и Uzb-Ind-2020-83 Министерства инновационного развития республики Узбекистан и ATLANTIC-823897 (HORIZON-2020).


Download article

Количество скачиваний: 165