551.513 Global climate model taking into account the biogeochemical carbon cycle of terrestrial vegetation

Parkhomenko V. P. (Bauman Moscow State Technical University/Institution of Russian Academy of Sciences Dorodnicyn Computing Centre of RAS)

CARBON CYCLE, GLOBAL CLIMATE MODEL


doi: 10.18698/2309-3684-2021-2-3853


The aim of this work is to consider a global model of the carbon cycle. The model describes the production process of forest ecosystems taking into account the seasonal sicle of climatic factors. It is designed to simulate a long period of time as part of a global climate model of intermediate complexity. It has been established that the global characteristics of the climate system reach a steady state over a period of about 2000 years, and the model works steadily. The temporal and spatial distributions of the obtained climatic characteristics and the biogeochemical carbon cycle of terrestrial vegetation are given.


Borisenkov E.P., Kondratiev K.Ya. Krugovorot ugleroda i klimat [Carbon cycle and climate]. Leningrad, Gidrometeoizdat, 1988, 320 p.
Parkhomenko V.P. Global climate model including description of thermohaline circulation of the World Ocean. Маthematical Modeling and Coтputational Methods, 2015, no.1, pp.94–108.
Williamson M.S., Lenton T.M., Shepherd J.G., Edwards N.R. An efficient numerical terrestrial scheme (ENTS) for Earth system modeling. Ecological Modelling, 2006, no.198, pp.362–374.
Olson J.S., Watts J.A., Allison L.J. Major world ecosystem complexes ranked by carbon in live vegetation: a database (NDP-017). Oak Ridge, Tennessee, Carbon Dioxide Information Center, Oak Ridge National Laboratory, 1985, accessed 26.02.2020.
Cox P.M. TRIFFID: a top-down model of interactive foliage including dynamics. Hadley Centre, Climate Research Technical Note 86, 1998.
Weaver A.J., Eby M., Wiebe E.C., Ewen T.L., Fanning A.F., MacFadyen A., Matthews H.D., Meissner K.J., Saenko O., Schmittner A., Yoshimori M., Bitz C.M. The UVic earth system climate model: Model description, climatology, and applications to past, present and future climates. Atmosphere – Ocean, 2001, vol.39, iss.4, pp.361–428.
Edwards N.R., Marsh R. Uncertainties due to transport–parameter sensitivity in an efficient 3–D ocean–climate model. Climate Dynamics, 2005, vol.24, iss.4, pp.415–433.
Bolton D. The computation of equivalent potential temperature. Monthly Weather Review, 1980, vol.108, iss.7, pp.1053–1980.
Lenton T.M. Land and ocean carbon cycle feedback effects on global warming in a simple Earth system model. Tellus, Series B: Chemical and Physical Meteorology, 2000, vol.52, iss.5, pp.1159–1188.
Adams B., White A., Lenton T.M. An analysis of some diverse approaches to modelling terrestrial net primary productivity. Ecological Modelling, 2004, vol.177, iss.3–4, pp.353–391.
Medlyn B.E., Dreyer E., Ellsworth D., Forstreuter M., Harley P.C., Kirschbaum M.U.F., Le Roux X., Montpied P., Strassemeyer J., Walcroft A., Wang K., Loustau D. Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data. Plant, Cell and Environment, 2002, vol.25, iss.9, pp.1167–1179.
Cox P.M., Huntingford C., Harding R.J. A canopy conductance and photosynthesis model for use in a GCM land surface scheme. Journal of Hydrology, 1998, vol.212–213, iss.1–4, pp.74–94.
Lloyd J., Taylor J.A. On the temperature dependence of soil respiration. Functional Ecology, 1994, vol.8, iss.3, pp.315–323.
Essery R., Best M., Cox P. MOSES 2.2 technical documentation. Hadley Centre, Hadley Centre technical note 30, 2001.
Petoukhov V., Ganopolski A., Brovkin V., Claussen M., Eliseev A., Kubatzki C., Rahmstorf S. CLIMBER-2: A climate system model of intermediate complexity. Part I: Model description and performance for present climate. Climate Dynamics, 2000, vol.16, iss, 1, pp.1–17.
Dimitrienko Yu.I., Koryakov M.N., Zakharov A.A. Computational modeling of conjugated aerodynamic and thermomechanical processes in composite structures of high–speed aircraft. Applied Mathematical Sciences, 2015, vol.9, no.98, pp.4873–4880.
Dimitrienko Y.I., Leontieva S.V. Modeling of thermal convection processes under unidirectional crystallization of alloys with liquid bridges motion. Маthematical Modeling and Coтputational Methods, 2018, no.4, pp.3–24.
Dimitrienko Y.I., Koryakov M.N., Zakharov A.A. Application of finite difference TVD methods in hypersonic aerodynamics. Lecture Notes in Computer Science, 2015, vol.9045, pp.161–168.
Dimitrienko Y.I., Li S. Mathematical simulation of non-isothermal steady flow of non-Newtonian fluid by finite element method. Маthematical Modeling and Coтputational Methods, 2018, no.2, pp.70–95.
Parkhomenko V.P. Modeling of global and regional climate response to solar radiation management. Journal of Physics: Conference Series, 2018, vol.1141, art no.012057. DOI: 10.1088/1742-6596/1141/1/012057
Pachauri R.K., Meyer L.A. IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Switzerland, Geneva, IPCC, 151 p.


Пархоменко В.П. Глобальная климатическая модель с учетом биогеохимического углеродного цикла растительности суши. Математическое моделирование и численные методы, 2021, № 2, с. 38–53.



Download article

Количество скачиваний: 47