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Целью данной работы является построение глобальной модели цикла углерода.           

Модель описывает продукционный процесс лесных экосистем с учетом сезонного 

хода климатических факторов. Она предназначена для моделирования длительного 

периода времени в составе глобальной климатической модели промежуточной 

сложности. Установлено, что глобальные характеристики климатической                       

системы выходят на установившейся режим за время около 2000 лет и модель 

устойчиво работает. Приведены временные и пространственные распределения 

полученных климатических характеристик и биогеохимического углеродного цикла 

наземной растительности. 
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Введение. К биологическим циклам относятся все процессы,             

связанные с жизнедеятельностью организмов в самом широком 
смысле. С возникновением биосферы на протяжении последних             
нескольких сотен миллионов лет кругооборот веществ в природе 
направляется совместным действием биологических, геохимических и 
геофизических факторов. Именно в этом смысле употребляются          
термины «биогеохимический круговорот», «биогеохимические 
циклы» элементов, соединений, вещества. К настоящему времени 
также воздействие человека на природу и климат приобрело глобаль-
ный характер. 

Биогеохимический цикл (круговорот) углерода играет особую 
роль при анализе биосферных и климатических процессов: с одной 
стороны, он характеризует динамику органического вещества в           
биосфере, а с другой — в значительной степени определяет климат 
планеты.  

Сухое органическое вещество примерно наполовину состоит из 
углерода. Поэтому углерод является характеристикой динамики                    
органического вещества в экосистемах. В таких процессах, как рост и 
отмирание растительности, разложение мертвого органического веще-
ства, поглощается или выделяется двуокись углерода. Другим углеро-
досодержащим газом биологического происхождения является метан.  

Углерод в атмосфере находится в основном в виде парникового 
газа — двуокиси углерода и влияет на климат планеты.  
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Растения в процессе фотосинтеза поглощают углерод в виде               
двуокиси углерода из атмосферы. В процессе разложения мертвого  
органического вещества в атмосферу выделяется углерод в виде                
двуокиси углерода. Таким образом, углерод характеризует обмен              
живого и мертвого вещества с двуокисью углерода в атмосфере.  

Установлено [1], что в живом веществе Земли основная роль               
принадлежит растительным фотосинтезирующим организмам, кото-
рые составляют 95–99% всей массы живого вещества. Что касается 
биомассы животных, то она составляет лишь несколько процентов от 
биомассы растительности, а на долю позвоночных приходится лишь 
0,2–4% зоомассы. Практически вся биомасса сосредоточена на            
суше — суммарное количество углерода в живом органическом                   
веществе суши примерно такое же, как и количество углерода в                      
атмосфере (соответственно, 1000 млрд. т. и 700 млрд. т.) Количество 
углерода в живом веществе океана почти в 15 тыс. раз меньше, чем 
углерода в растительности на суше. 

В работе представлена пространственная модель динамики                       
углерода растительности, углерода в почве, влажности почвы и                       
обмена энергией, влагой и углеродом с атмосферой. Численная схема 
предназначена для моделирования длительного периода времени              
совместно с глобальной климатической моделью промежуточной 
сложности [2]. Модель включает в себя параметризации раститель-
ного покрова и параметра шероховатости поверхности как функции 
углерода растительности, а также связь между запасами углерода 
почвы и влажностью почвы. Она объединяет описание механизмов 
эволюции потоков и запасов углерода в одной модели аналогично [3]. 

Целью данной работы является построение глобальной модели 
цикла углерода, описывающей продукционный процесс лесных                 
экосистем, учитывающей сезонный ход климатических факторов.             
Модель включена в качестве блока в глобальную климатическую                
модель. В задачи моделирования входит исследование поведения                  
модели при антропогенном изменении климатических параметров,                  

а также влияние лесов на сезонное изменение концентрации 2CO                     

в атмосфере.  
Задачей данного исследования является также создание системы 

визуализации и представления входных и расчетных распределений 
характеристик для последующего анализа и использования. 

Описание модели углеродного цикла. Рассматривается                       

среднесуточная инсоляция с учетом ее сезонного хода. При этом               

предполагается, что температура поверхности земли достигает равно-

весия быстрее, чем частота каждого вызова модели климата. Поэтому 

для определения температуры поверхности земли 
lT  принимается                        

следующее соотношение энергетического баланса в равновесном                

состоянии: 



В.П. Пархоменко 

40 

 
   1 1 1 ,atm A s SW LH LW SHC Q Q Q Q      

  

где 
SWQ   — поток приходящей коротковолновой солнечной радиации 

на верхней границе атмосферы, 
atm  —  альбедо атмосферы,                    

0,3AC   — параметр, определяющий радиацию, поглощенную                  

аэрозолем и влагой в атмосфере, s  — альбедо подстилающей поверх-

ности. Члены, определяющие потоки тепла в правой части уравнения 

(1), задаются следующими соотношениями и имеют размерность                     

потока энергии.  

Скрытая теплота испарения 
LHQ  задается соотношением: 

 0 ,LH vQ L E   

где 3

0 1000 кг/м    — стандартная плотность воды и 62 :50 10vL    

Дж/кг — коэффициент скрытой теплоты парообразования, E  —             

испарение влаги. Результирующий длинноволновый (тепловой) поток 

излучения между сушей и атмосферой LWQ  определяется соотноше-

нием: 

 4 4 ,LW l lQ T T        

где 0 :94l   и 0:85   — эмпирические коэффициенты излучения 

земли и атмосферы, соответственно, 8 2 45:67 10 Вт м К        — 

постоянная Стефана–Больцмана, T  — температура атмосферы.          

Турбулентный поток явного тепла SHQ  с подстилающей поверхности: 

   ,SH H p lQ C C U T T      

где 31,25 кг м   — характерная поверхностная плотность воздуха, 

1 11004 Вт кг КpС 

     — удельная теплоемкость воздуха, U  —            

скорость ветра. Коэффициент теплопередачи 
HC  задается                            

соотношением: 

 

2

0

1
ln ,r

H

z
C

k z



  
   

  
  

где 0,41k   — константа Фон Кармана, 10 мrz   — характерная               

высота атмосферного пограничного слоя, которая совпадает с                      

высотой, на которой берутся U  и T  и 0z — характерный размер                 

шероховатости поверхности.  
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На основе анализа регрессии глобальных наборов данных                 

углерода растительности 
vC  и размера шероховатости 0z  [3, 4]                      

последний, как обнаружено, линейно зависит от углерода раститель-

ности 
vC :  

  0 min 0,001 , ,z vz m k C   

где 3 10,0452 м кг Сzk    . Эта параметризация размера шероховато-

сти имеет простой вид и используется для разных функциональных 

типов растений [5]. Линейная зависимость размера шероховатости от 

биомассы фактически означает, что размер шероховатости трав с             

низкой биомассой намного меньше, чем размер шероховатости               

деревьев с высокой биомассой.    

Каждая точка суши моделируется как имеющийся резервуар воды 

с влагоемкостью *

SW  и запасом влаги SW  в данный момент времени. 

Вода добавляется в почву за счет выпадения осадков WP   1м с  и   

удаления путем испарения E  и стока R : 

 .SdW
P E R

dt
     

Сток возникает только тогда, когда количество влаги в каждой 

ячейке превышает ее влагоёмкость и, следовательно, его можно                

рассматривать как поверхностный сток. Формула для вычисления                

испарения E  соответствует подходу, используемому в [6, 7]. Если за-

паса влаги в ячейке меньше предельной влагоемкости  *

S SW W , то 

испарение уменьшается в соответствии с коэффициентом  . Он             

моделирует ситуацию, что чем суше почва, тем меньше испарение. 

Формула для определения испарения E : 

   
0

,W
S l

C U
E q T q







    

Здесь  S lq T  — удельная влажность насыщения для почвы, q  — 

удельная влажность атмосферы (обе величины безразмерные), 
WC  — 

коэффициент переноса для влаги и принимается, что W HC C .          

Значение   определяется так, чтобы дать значение между 0 и 1 в           

зависимости от насыщенности почвы влагой. Для поверхности,         

полностью покрытой водой *

S SW W  и 1  . Если *

S SW W , тогда:  

 

4

*
.S

S

W

W


 
  
 
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Значение удельной влажности насыщения определяется парамет-

ризацией [8]: 

  
4

5

1 ,

c T

T c

Sq T c e


   

где константы 
1 0,0038c  , 4 17,67c  , 

5 243,5 Cc  . 

Когда количество влаги в почве превышает предельную влагоем-

кость, избыточная влага стекает в океан в ячейку, определяемую               

картой стоков в модели климата [7]. За временной шаг величиной t , 

при условии *

S SW W  сток R   1м с : 

  *1
,S SR W W

t
    

причем всегда 0R  . 

Предполагается, что влагоемкость почвы имеет линейную зависи-

мость от углерода почвы SC : 

  *

8 9 10min , .S SW k k k C    

Эта формулировка — попытка описать различие между водоудер-

живающей способностью пустыни (низкий, близкий к нулю уровень 

углерода в почве) и области болот (высокие показатели углерода 

почвы). 

Углеродный цикл наземной растительности основывается на              

подходе [9] с модифицированными зависимостями для описания                

водного напряжения, осенних опавших листьев, а также функциями 

для описания фотосинтеза, дыхания растений и почвенного дыхания 

от температуры. 

В предлагаемой модели углерод суши может находиться в                    

растительности VC  (живая биомасса), или в почве SC  (гумус и                    

органический углерод в почве, но не неорганические карбонаты).           

Растительность может поглощать углерод из атмосферы через процесс 

фотосинтеза P  и испускать углерод в атмосферу вследствие дыхания 

растений VR . Растительность также передает углерод в почву через 

опавшие листья L , а почва инжектирует углерод в атмосферу посред-

ством почвенного дыхания SR . 

Соответствующие балансные уравнения: 

 

,

,

V
V

S
S

dC
P R L

dt

dC
L R

dt

  

 
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где VC  и SC  имеют размерность массы углерода на единицу площади 

и потоки углерода P , VR , L  и 
SR  имеют размерность массы углерода 

на единицу площади в единицу времени. 

Чистая продукция органического вещества (нетто фотосинтез) P  

(т.е. валовый фотосинтез минус фото-дыхание) определяется по           

формуле: 

      18 1 2 2 3 .S a vP k f CO f W f T f   

Это произведение четырех функций, представляющих влияние     

количества углекислого газа  1 2f CO , количества влаги  2 Sf W ,            

температуры воздуха  3 af T , и зависимость насыщения от биомассы 

vf . Постоянная 18k  — базовое значение скорости нетто фотосинтеза 

листвы. 

Реакция фотосинтеза на количество 2CO  следует гиперболиче-

ской зависимости выше компенсационной точки [9]. При 
2 13pCO k  

(точка компенсации): 

   2 13
1 2

19 2 13 14

1
.

pCO k
f CO

k pCO k k




 
  

В противном случае  1 2 0f CO  , где 13
19

13 14

278

278

k
k

k k




 
 —                  

нормировочный коэффициент. Значения 13k  и 14k  взяты из [9]. 

Зависимость фотосинтеза от влажности почвы линейна в опреде-

ленных пределах:        

  2 *

4
2S

S

S

W
f W

W
    

и увеличивается от 0 при *0,5 SW   до 1 при *0,75 SW . Другие модели           

используют качественно аналогичные линейные или с насыщением       

зависимости [10]. 

Реакция фотосинтеза на температуру основывается на максималь-

ной скорости карбоксилирования, с дополнительным обрезанием 

функции при минусовых температурах [5]. Тем не менее, здесь              

объединяются две температурные функции отклика для того, чтобы 

описать реакцию типов растительности в высоких и низких широтах: 

 
     3 3 3 .a a a b af T f T f T 

  

Две функции, составляющие  3 af T  даются формулами: 
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 
 

     

 
 

     

11 12

11 12

0,1

3 0,3 0,3

0,1

3 0,6 0,3

2,0
,

1 1

2,0
,

1 1

a ref

a a a

a ref

a b a

T T

a a T k T k

T T

b a T k T k

f T
e e

f T
e e



  



  


 


 

  

где 298,15 KrefT  . 

Результирующая функция от температуры атмосферы имеет два 

локальных максимума на основе анализа данных содержания углерода 

растительности [4] в зависимости от широты, которая показывает 

главный максимум на экваторе и меньший — в высоких широтах, 

представляющие тропические и бореальные лесные зоны, соответ-

ственно. Такая функция обеспечивает хорошее согласование данных 

растительности и количества почвенного углерода, без необходимости 

включать разные типы растительности высоких и низких широт.           

Отметим, что фотосинтетическая реакция растений имеет значитель-

ный потенциал, чтобы акклиматизироваться к преобладающим                

температурам [11] и в некоторых бореальных лесах может прибли-

зиться к низкой оптимальной температуре для роста, что соответ-

ствует меньшему пику в нашей функции, а главный пик является               

разумным для тропического леса. Однако причина минимума                   

углерода растительности в средних широтах объясняется преоблада-

нием пастбищ в засушливых условиях, которое частично описывается 

зависимостью фотосинтеза от влаги в модели. 

Фракция растительности vf  определяется в качестве насыщаю-

щей функции углерода растительности, которая изменяется между                   

0 и 1. Значение 1vf   подразумевает закрытый лесной полог. Значение 

0,5 соответствует вегетации половины ареала: 

 171 .Vk C

vf e


    

Значение 17k  определяется из анализа баз данных для углерода 

растительности. Этот подход эквивалентен введению зависимости 

светового вымирания лесного полога от индекса листовой поверхно-

сти, которая в свою очередь зависит от биомассы, как, например, в 

[12]. Оба подхода определяют фотосинтез насыщающей функцией 

биомассы.  

Дыхание растительности определяется температурой воздуха и 

количеством биомассы [9]: 

  24
4

25

,V a V

k
R f T C

k
   
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где 24k  — скорость дыхания растительности и 

20

25
ref

k

RT
k e



  является  

нормирующей постоянной.  

  
20

4 ,a

k

RT

af T e



   

где 20k  — энергия активации и 1 18,314 Дж моль KR      — универ-

сальная газовая постоянная. 
Количество углерода, потерянного растительностью в почву через 

опавшие листья L , связано с количеством углерода растительности 

VC  и чистой первичной продуктивностью 
VP P : 

  26 ,V VL k C P R     

где 26k  есть так называемая интенсивность кругооборота и                       

представляет затенение, задаваемое соотношением: 

 
16

1
.

1 Vk C
e







  

Это уравнение из [5] означает, что вся новая продуктивность 
направляется в опавшие листья, когда 1  . Это происходит, когда 

1Vf  , т. е. лесной полог закрыт. 

Поток углерода в атмосферу за счет дыхания почвы 
SR  зависит от 

температуры земли 
lT  и количества углерода в почвенном                              

резервуаре SC :  

  29
5

30

,S l S

k
R f T C

k
   

где 29k  — скорость почвенного дыхания, и 30k  является нормирующей 

постоянной. Выше точки замерзания, для 273,15 KlT   [13]: 

    
31

32

5 .l

k

T k

lf T e



   

Ниже точки замерзания скорость дыхания почвы определяется 
формулой: 

    00,1

6 0 10 ,lT T

lf T k Q


   

где 0 273,15 KT  ,  0 5 0k f T  и 
 

31

2

0 32

10

10

k

T k
Q e


 . Это предотвращает                

нереальное разрушение почвенного резервуара, когда lT                                 

приближается к 32k  в выражении для 5f . 
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Альбедо земной поверхности зависит от типа поверхности,               

т. е. снег, растительность, голый грунт или песок, и является функцией 

растительности и почвенного углерода. 

Для свободной от снега поверхности, альбедо земной поверхно-

сти:  

  1 ,S v v v soilf f       

где 0,1v   — альбедо растительности. Зависимость альбедо поверх-

ности от фракции растительности 
Vf  аналогична [5], где альбедо             

поверхности S  — это насыщающая функция индекса листовой                    

поверхности, которая в свою очередь зависит от биомассы. Альбедо 

почвы 
soil  задается следующей формулой: 

   10

8 9

max , ,S
soil peat peat sand sand

k C

k k
    

 
   

 
  

где 0,11peat   и 0,30sand  . Если снег присутствует, то альбедо            

земной поверхности вычисляется как  

   7 ,Vk Csnow snow snow snow

s V Ve   
     

где 0,3snow

s   — альбедо покрытой снегом растительности и 

0,8snow   — альбедо заснеженной плоской поверхности [14]. 

Здесь предполагается, что осадки, попадающие в ячейку,                            

выпадают как снег, когда T  и 
lT  ниже чем 5 C . [6]. Считается, что 

снежный покров имеет нулевую толщину и поэтому его альбедо не                   

зависит от высоты снежного покрова, в то время как другие более                    

подробные описания снега принимают во внимание глубину [14, 15]. 

Снег остается в ячейке, пока T  или 
lT  не превышает 5 C . В работе 

принимается во внимание только главный эффект альбедо снежного 

покрова и, следовательно, пренебрегается полным термодинамиче-

ским подходом, который должен включать замерзание, плавление и 

сублимацию. 

Постановка задачи и результаты численных экспериментов. 
Математическое и численное моделирование является важным                 
инструментом для исследования климатической системы. Современ-
ное моделирование проводится с помощью развитых программных 
средств, в том числе отечественных, например, для решения задач              
нестационарной газодинамики многокомпонентного газа различными 
численными методами [16–19]. В настоящей работе модель углерод-
ного цикла рассчитывается совместно с глобальной климатической 
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моделью на той же сетке [2, 20]. В последней рассчитываются                     
температура, влажность, осадки (в виде дождя или снега) и скорости 
ветра в атмосфере на глобальной конечно — разностной сетке с                           
реальной конфигурацией материков. Также определяются потоки                
солнечного и теплового излучения посуточно и в сезонном режиме.                     
В модели углеродного цикла определяются альбедо, температура и 
влажность почвы, потоки тепла и влаги с поверхности почвы, потоки 
углерода, запасы углерода в растениях, почве, шероховатость подсти-
лающей поверхности и другие.  

Характеристики углеродного цикла наземной растительности               

модели соответствуют ситуации сохранения концентрации 2CO  в               

атмосфере в доиндустриальную эпоху 278 частей на миллион по                 
объему. Для согласования были выбраны глобальные среднегодовые 
потоки углерода нетто–фотосинтеза, дыхания растительности,                     
опавших листьев и дыхания почвы [21] доиндустриальных значений 

120  ГтС/год  (гига тонн углерода в год) для нетто–фотосинтеза и 60 

ГтС/год  для других потоков, путем изменения констант скоростей  

18k , 24k , 26k , 29k  . Эти данные включают в себя эффекты изменения 

землепользования, которые создают тенденцию к снижению запасов 
углерода, в то время как определяют потенциальный растительный    
покров при отсутствии изменений в землепользовании.  

Средние глобальные параметры модели выходят на установив-
шийся режим за расчётный период около 2000 лет. К ним относятся 
такие характеристики, как среднегодовые температура воздуха, коли-
чество углерода почвы и углерода растительности, осреднённые по 
всей Земле (рис 1). 

 

 

 

 

 
 

 

Рис. 1. Изменение среднегодового углерода почвы и углерода 

растительности за период 2000 лет 
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На рис. 2 представлено распределение углерода растительности, 

характеризующее массу растительности на Земле. Согласно расчетам, 

зона наиболее интенсивной растительности — это часть Южной и            

Северной Америки в районе экватора с небольшими вкраплениями 

широт в 50 градусов. Также существуют два максимума для раститель-

ности, связанные с тропическими и бореальными лесами, что хорошо 

согласуется с результатами [3]. Среднегодовое распределение                 

углерода в почве (рис. 3) коррелирует с распределением углерода              

растительности. 

 

    
 

Рис. 2. Среднегодовое распределение углерода растительности 

     

 

      
  

Рис. 3. Среднегодовое распределение углерода в почве 

 

В соответствии с наличием углеродных циклов в модели                         

рассчитывается также изменение альбедо поверхности суши (рис. 4),  

температуры поверхности суши (рис. 5) и других климатических                  

характеристик. 

Выводы. В настоящей работе изучена и реализована глобальная 

климатическая модель промежуточной сложности, состоящая из 

энерго — влагобалансовой модели атмосферы и термохалинной           

модели мирового океана.  
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Рис. 4. Среднегодовое альбедо поверхности суши 

 

         
 

Рис. 5. Среднегодовая температура поверхности суши 

 

Для увеличения адекватности модели предложена глобальная         

модель биогеохимического цикла наземного углерода, описывающая 

продукционный процесс лесных экосистем с учетом сезонного хода 

климатических характеристик.  

Реализованы численные эксперименты, представляющие выход 

объединённой модели на установившейся режим. Установлено, что 

глобальные характеристики климатической системы стабилизируются 

за время около 2000 лет и модель устойчиво работает. 

Приведены временные и пространственные распределения                       

полученных характеристик климата и биогеохимического углерод-

ного цикла наземной растительности.  
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тропическим и бореальным лесам, что согласуется с результатами  

расчетов на более грубой сетке. 
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Задачей данного исследования являлось также создание системы 

визуализации и представления входных и расчетных распределений 

характеристик для последующего анализа и использования. 
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The aim of this work is to consider a global model of the carbon cycle. The model describes 

the production process of forest ecosystems taking into account the seasonal sicle of cli-

matic factors. It is designed to simulate a long period of time as part of a global climate 

model of intermediate complexity. It has been established that the global characteristics of 

the climate system reach a steady state over a period of about 2000 years, and the model 

works steadily. The temporal and spatial distributions of the obtained climatic character-

istics and the biogeochemical carbon cycle of terrestrial vegetation are given. 
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