Рубрика: "1.2.2. Математическое моделирование, численные методы и комплексы программ (технические науки)"



519.63 Молекулярно-динамическое моделирование модификации алюминия лазерной ударной волной

Перов Е. А. (Объединенный институт высоких температур РАН), Жаховский В. В. (Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова/Объединенный институт высоких температур РАН), Иногамов Н. А. (Институт теоретической физики им. Л.Д. Ландау РАН), Шепелев В. В. (Институт автоматизации проектирования РАН), Фортова С. В. (Институт автоматизации проектирования РАН), Долуденко А. Н. (Объединенный институт высоких температур РАН)


doi: 10.18698/2309-3684-2023-4-7492


Пластические деформации лежат в основе такой промышленной технологии, как лазерное термоупрочнение или лазерный пиннинг (LSP, laser shock peening). В данной работе методом классической молекулярной динамики исследована возможность упрочнения поверхностного слоя алюминиевого образца, облученного единичным фемтосекундным лазерным импульсом. Рассмотрены три ориентации кристаллической решетки — [1, 0, 0] (первая ориентация кристаллической решетки), [1, 1, 0] (вторая ориентация кристаллической решетки), [1, 1, 1] (третья ориентация кристаллической решетки). Проведено численное исследование влияния различных величин вложенной энергии в диапазоне от 120,98 Дж/м2 до 2540,01 Дж/м2 лазерного импульса на глубину залегания пластических деформаций, влияющих на упрочнение исследуемого материала. Построена зависимость максимальной глубины залегания пластических деформаций от вложенной энергии. Значения энергий подобранны таким образом, что пластический фронт УВ (ударной волны) останавливался до того, как достигнет правой границы моделируемого образца. Необходимость соблюдения этого условия обусловлена тем фактом, что отразившаяся от правой границы образца волна растяжения может тормозить пластический ударный фронт, выступая в роли волны разгрузки. С помощью построенной в работе зависимости максимальной глубины залегания пластических деформаций от вложенной энергии определено пороговое значение вложенной энергии, при превышении которого алюминий начинает пластически деформироваться.


Перов E.А., Жаховский В.В., Иногамов Н.А., Шепелев В.В., Фортова С.В., Долуденко А.Н.. Молекулярно-динамическое моделирование модификации алюминия лазерной ударной волной. Математическое моделирование и численные методы, 2023, № 4, с. 74-92



519.62 Применение одношагового метода Галеркина для решения системы обыкновенных дифференциальных уравнений с начальными условиями

Русских С. В. (ФГБУ ВО "Московский авиационный институт"), Шклярчук Ф. Н. (ФГБУ ВО "Московский авиационный институт")


doi: 10.18698/2309-3684-2022-3-1832


Рассматривается нелинейная колебательная система, описываемая обыкновенными дифференциальными уравнениями с переменными коэффициентами. Предполагается, что на рассматриваемом интервале времени решение системы является достаточно гладкими — без разрывов, столкновений и бифуркаций. Из неоднородной системы уравнений выделяются в явном виде члены, линейно зависящие от координат, скоростей и ускорений и члены, зависящие от этих переменных нелинейно. Предлагается новый подход для численного решения шаговым методом начальной задачи, описываемой такой системой обыкновенных дифференциальных уравнений второго порядка. На шаге интегрирования неизвестные функции представляются в виде суммы функций, удовлетворяющих начальным условиям: линейного решения Эйлера и нескольких заданных корректирующих функций в виде полиномов второй и выше степеней с неизвестными коэффициентами. Дифференциальные уравнения на шаге удовлетворяются приближённо в смысле слабого решения по методу Галеркина на системе корректирующих функций. Получаются алгебраические уравнения с нелинейными членами, которые решаются методом итераций, начиная в первом приближении с линейного решения. Полученное решение в конце данного шага используется в качестве начальных условий на последующем шаге. В качестве примера рассмотрено одно однородное дифференциальное уравнение второго порядка без первой производной с сильной кубической нелинейностью по координате (при максимальной амплитуде нелинейная сила в два раза превышает линейную силу). Это уравнение имеет точное периодическое решение в виде интеграла энергии консервативной системы, которое используется для оценки точности численных решений, полученных методами Галеркина, Рунге-Кутта и Адамса второго порядка, а также методами Radau5 и BDF на различных интервалах времени (до 8000 периодов свободных колебаний системы) при использовании различных постоянных шагов интегрирования (от 0,0025 долей периода). При этом в методе Галеркина на каждом шаге использовалось четыре одинаковых корректирующих функций в виде полиномов от второй до пятой степеней. Показано, что на больших интервалах времени вычислений метод Галеркина обладает более высокой точностью по сравнению с другими рассмотренными численными методами. Поэтому он может быть использован для численного решения нелинейных задач, в которых требуется решать их на больших интервалах времени; например при расчете установившихся предельных циклов нелинейных колебаний и хаотических нелинейных колебаний со странными аттракторами.


Русских С.В., Шклярчук Ф.Н. Применение одношагового метода Галеркина для решения системы обыкновенных дифференциальных уравнений с начальными условиями. Математическое моделирование и численные методы, 2022, № 3, с. 18–32.



519.654 О моделировании циклических процессов решениями кусочно-линейных разностных уравнений с постоянными коэффициентами по экспериментальным данным в виде временных рядов

Смирнов В. Ю. (ГБУЗ МО МОНИКИ им. М. Ф. Владимирского/ООО Азфорус), Кузнецова А. В. (ИБХФ РАН)


doi: 10.18698/2309-3684-2022-4-6380


В работе рассмотрено моделирование циклических процессов реального макромира набором двух (или большего числа) систем линейных разностных уравнений с постоянными коэффициентами. Показано, что из любого начального состояния система может быть переведена в заданное конечное состояние за заданное число шагов и, как следствие — получены условия существования циклического решения на плоскости или в пространстве любой размерности. Для циклического решения интегральные кривые систем состыковываются по непрерывности. Переключение с одной системы уравнений на другую происходит при достижении интегральными кривыми границ на фазовой плоскости (пространстве). Проведен анализ скорости сходимости таких решений к устойчивому циклу. Показана существенная зависимость хода интегральных кривых (траекторий) от начальных условий. Модель в виде авторегрессий связана с экспериментальными данными — временными рядами и аппроксимирует их по критерию минимизации среднеквадратичного отклонения. Предложенные модели могут также применяться к задачам достижения заданных значений процессов (технических, экономических) в заданный момент врем


Смирнов В.Ю., Кузнецова А.В. О моделировании циклических процессов решениями кусочно-линейных разностных уравнений с постоянными коэффициентами по экспериментальным данным в виде временных рядов. Математическое моделирование и численные методы, 2022, № 4, с. 63–80.



519.2 Сравнительный анализ методов моделирования и прогнозирования временных рядов на основе теории фрактального броуновского движения

Облакова Т. В. (МГТУ им.Н.Э.Баумана), Алексеев Д. С. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2022-4-4862


Работа посвящена сравнению различных методов моделирования и применения фрактального броуновского движения в задачах анализа временных рядов. Реализованы программные модули, генерирующие траектории фрактального броуновского движения с использованием методов стохастического представления, разложения Холецкого и Дэвиса-Харта. Проведено сравнение алгоритмов с точки зрения их сложности и качества получаемых траекторий. Показатель Хёрста оценивался методами Минковского и R/S анализа. Предложена и реализована аппроксимация временных рядов фрактальным броуновским движением с помощью степенной функции для последующего применения алгоритма линейного прогнозирования, основанного на теореме о нормальной корреляции. Установлено, что с помощью представленной аппроксимации удается добиться удовлетворительного прогноза валютного курса на несколько значений вперед.


Облакова Т.В., Алексеев Д.С. Сравнительный анализ методов моделирования и прогнозирования временных рядов на основе теории фрактального броуновского движения. Математическое моделирование и численные методы, 2022, № 4, с. 48–62



519.6:621.646.3 Компьютерное моделирование динамических процессов в гидравлическом стабилизаторе расхода и его оптимизация на основе эволюционного алгоритма

Иванов М. Ю., Бушуев А. Ю. (МГТУ им.Н.Э.Баумана), Щербаков Н. С. (МГТУ им.Н.Э.Баумана), Реш Г. Ф.


doi: 10.18698/2309-3684-2024-3-100119


В различных технических системах для обеспечения синхронного перемещения исполнительных органов широко применяются гидравлические устройства - нерегулируемые дроссели, делители потока, регуляторы и/или стабилизаторы расхода. Последние характеризуются тем, что их функционирование происходит в диапазоне перепадов давлений жидкости, составляющем несколько сотен атмосфер. Рассмотрены вопросы, связанные с численным моделированием нестационарных физических процессов в стабилизаторе расхода, конструкция которого защищена патентом Российской Федерации на изобретение. Представлены результаты компьютерного моделирования на основе теоретической модели с сосредоточенными параметрами, использования конечно-разностного неявного метода Гира для решения системы жёстких дифференциальных уравнений. Сформулирована и решена задача оптимального усовершенствования конструкции такого стабилизатора расхода в соответствии с выбранным критерием. Этим критерием оптимизации является обеспечение условия минимально возможного положительного статизма расходно-перепадной (статической) характеристики в условиях широкого изменения перепада давления на устройстве и воздействия осевой составляющей гидродинамической силы. Задача оптимального усовершенствования конструкции решалась с применением одного из широко используемых эволюционных алгоритмов оптимизации генетического алгоритма с вещественным кодированием. Результаты вычислительных экспериментов при моделировании физических процессов задачи анализа соответствуют имеющимся экспериментальным данным, которые ранее получены авторами работы. Показано, что усовершенствование существующей конструкции стабилизатора расхода возможно угол наклона расходно-перепадной характеристики к горизонтальной оси уменьшился практически в два раза. При этом удалось получить более высокую точность поддержания объёмного расхода жидкости. Эта точность составляет порядка ±7,5 % от номинального (настроечного) значения стабилизатора расхода. Для сравнения, точность поддержания объёмного расхода жидкости до выполнения процедуры оптимизации составляла порядка ±10 %.


Иванов М.Ю., Бушуев А.Ю., Щербаков Н.С., Реш Г.Ф. Компьютерное моделирование динамических процессов в гидравлическом стабилизаторе расхода и его оптимизация на основе эволюционного алгоритма. Математическое моделирование и численные методы, 2024, № 3, с. 100-119.



539.3 Конечно-элементное моделирование нестационарной термоустойчивости композитных конструкций

Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Богданов И. О. (МГТУ им.Н.Э.Баумана), Юрин Ю. В. (МГТУ им.Н.Э.Баумана), Маремшаова А. А. (МГТУ им.Н.Э.Баумана), Анохин Д. С. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2024-1-3854


Рассматривается задача моделирования потери устойчивости конструкций из композиционных материалов вследствие нестационарных тепловых воздействий на них, с учетом температурной зависимости свойств компонентов композита. Сформулированы системы уравнений для расчета основного и варьированного состояний конструкции. Предложена классификация задач устойчивости. Описано применение метода конечных элементов для определения критической температуры и отвечающей ей формы потери устойчивости конструкции. Сформулирована локальная обобщенная задача на собственные значения и произведена верификация предложенной модели с помощью программного комплекса SMCM, разработанного в НОЦ «Симплекс» МГТУ им. Н.Э. Баумана, а также с помощью ПК ANSYS. Показано, что результаты расчета собственных форм и собственных значений в тестовой задаче достаточно хорошо совпадают.


Димитриенко Ю.И., Богданов И.О., Юрин Ю.В., Маремшаова А.А., Анохин Д. Конечно-элементное моделирование нестационарной термоустойчивости композитных конструкций. Математическое моделирование и численные методы, 2024, № 1, с. 38–54.



519.17 Задача о преследовании в 3D-пространстве с произвольными начальными углами прицеливания

Бодряков В. Ю. (Уральский государственный педагогический университет)


doi: 10.18698/2309-3684-2024-2-6884


В статье впервые получено аналитическое решение задачи о преследовании в системе «хищник–жертва» в евклидовом 3D-пространстве для произвольных начальных углов прицеливания. В процессе преследования жертва движется равномерно и прямолинейно, постоянный по модулю вектор скорости хищника нацелен на жертву. Точное решение задачи получено в форме параметрически заданной пространственной кривой преследования. Получены точные выражения для других существенных характеристик процесса преследования (времени преследования, координат жертвы, длины кривой преследования, и др.). Проведено реалистичное компьютерное моделирование взаимного движения хищника и жертвы в пространстве и во времени; определены характерные параметры процесса преследования. Отмечен значительный дидактический потенциал решенной задачи о 3D-преследовании для подготовки будущих специалистов в области механики и управления; задача может служить содержательной основой для выполнения обучающимися исследовательских проектов, курсовых и выпускных квалификационных работ.


Бодряков В.Ю. Задача о преследовании в 3D-пространстве с произвольными начальными углами прицеливания. Математическое моделирование и численные методы, 2024, № 2, с. 68-84.



004.89 Моделирование и параметрическая идентификация аэродинамических характеристик самолета транспортной категории с использованием нейросетей в среде Тensorflow

Крееренко С. С. (ПАО «ТАНТК им. Г.М. Бериева»), Крееренко О. Д. (ПАО «ТАНТК им. Г.М. Бериева»)


doi: 10.18698/2309-3684-2024-3-8199


Рассматривается задача моделирования продольного движения самолета транспортной категории и параметрическая идентификация аэродинамических характеристик продольного движения: составляющих безразмерных коэффициентов аэродинамической подъемной силы и момента тангажа. Задача решается в классе модульных полуэмпирических динамических моделей, созданных объединением теоретического и нейросетевого моделирования. Работоспособность и практическая значимость моделей подтверждается результатами вычислительных экспериментов. Разработка нейросетевой модели продольного движения самолета выполнена на языке Python с использованием открытой программной библиотеки Tensorflow для машинного обучения и высокоуровневого API Keras в составе Tensorflow.


Крееренко С.С., Крееренко О.Д. Моделирование и параметрическая идентификация аэродинамических характеристик самолета транспортной категории с использованием нейросетей в среде Тensorflow. Математическое моделирование и численные методы, 2024, № 3, с. 81–99.



004.855.5 Нейросетевые методы решения задачи кредитного скоринга

Кадиев А. Д. (МГТУ им.Н.Э.Баумана), Чибисова А. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2022-4-8192


Продемонстрирован математический вывод представленной модели нейронной сети. Сведение задачи классификации к задаче оптимизации. Произведен разведывательный анализ данных, а также их предобработка для дальнейшего использования в обучении алгоритмов классификации. Были спроектированы архитектуры нейронных сетей, зависящих от функции активации, количества скрытых слоев нейронной сети и количества нейронов в скрытых слоях. Обучено более десяти нейронных сетей, решающих поставленную задачу кредитного скоринга. Произведен расчет времени обучения нейронных сетей. Представлено решение задачи при помощи классических алгоритмов машинного обучения. Можно было заметить, что стандартное отклонение accuracy и ROC AUC для нейронных сетей больше, чем у случайного леса. Это происходит из-за того, что мы выбираем начальные веса случайным образом и градиенты считаем не на всей выборке, а на малых частях, что добавляет некоторую погрешность при обучении. Но эти отклонения были не только в худшую сторону. В лучших ситуациях, по обеим метрикам, нейронные сети показывали результат хуже всего на пару процентов. Произведен анализ резульатов. Сравнительный анализ показывает, что нейронные сети имеют лучшее качество классификации, чем классические алгоритмы машинного обучения, а также, что нейронные сети имеют меньшее время обучения, чем классические алгоритмы машинного обучения. Представлены графики и таблицы, отображающие имеемые результаты.


Кадиев А.Д., Чибисова А.В. Нейросетевые методы решения задачи кредитного скоринга. Математическое моделирование и численные методы, 2022, № 4, с. 81–92.



1>>