Рубрика: "1.2.2. Математическое моделирование, численные методы и комплексы программ (технические науки)"
doi: 10.18698/2309-3684-2022-4-4862
Работа посвящена сравнению различных методов моделирования и применения фрактального броуновского движения в задачах анализа временных рядов. Реализованы программные модули, генерирующие траектории фрактального броуновского движения с использованием методов стохастического представления, разложения Холецкого и Дэвиса-Харта. Проведено сравнение алгоритмов с точки зрения их сложности и качества получаемых траекторий. Показатель Хёрста оценивался методами Минковского и R/S анализа. Предложена и реализована аппроксимация временных рядов фрактальным броуновским движением с помощью степенной функции для последующего применения алгоритма линейного прогнозирования, основанного на теореме о нормальной корреляции. Установлено, что с помощью представленной аппроксимации удается добиться удовлетворительного прогноза валютного курса на несколько значений вперед.
Облакова Т.В., Алексеев Д.С. Сравнительный анализ методов моделирования и прогнозирования временных рядов на основе теории фрактального броуновского движения. Математическое моделирование и численные методы, 2022, № 4, с. 48–62
doi: 10.18698/2309-3684-2022-2-102113
С использованием метода динамики средних разработана «смешанная» модель противоборства многочисленных группировок при линейных зависимостях от времени эффективных скоростей нанесения воздействий единицами сторон. Построен алгоритм, позволяющий исследовать ход протекания процесса и вычислить его основные показатели. Установлено, что использование моделей с постоянными эффективными скоростями нанесения воздействий во многих случаях приводит к значительным ошибкам при вычислении основных показателей процесса. Исследовано влияние упреждающего воздействия одной из противоборствующих сторон на ход его протекания и окончательный итог.
Чуев В.Ю., Дубограй И.В. «Смешанная» модель противоборства многочисленных группировок при линейных зависимостях от времени эффективных скоростей воздействий единицами сторон. Математическое моделирование и численные методы, 2022, № 2, с. 104–115
523.6+533.6 Моделирование Тунгусского явления 1908 года в рамках двух возможных гипотез
doi: 10.18698/2309-3684-2023-3-4261
В рамках актуальной проблемы кометно-астероидной опасности численно исследуются физические процессы, вызывающие разрушение и фрагментацию метеорных тел в атмосфере Земли, в данном случае Тунгусского болида. Число всевозможных версий и гипотез, связанных с Тунгусским явлением, чрезвычайно велико и продолжает возрастать, поэтому необходим анализ и обобщений всех известных фактов, присущих этому нестандартному катастрофическому событию, и только после этого приступить к выдвижению тех или иных гипотез, его объясняющих. На основе разработанной физико-математической модели, определяющей движение космических объектов естественного происхождения в атмосфере и их взаимодействия с ней, нами предложены две гипотезы, объясняющие процессы, происходящие при падении Тунгусского тела в 1908г. Первая гипотеза связана с дроблением тела, представляющего собой каменный метеороид, на большое количество фрагментов, которые разрушились в плотных слоях атмосферы под действием термических напряжений до размера мелкой пыли. Трудности выявления мелких частиц, выпавших именно в результате Тунгусского события, объясняются в основном следующим обстоятельством ˗ сроки начала первичных поисков следов падения тела были отдалены от момента события на целых двадцать лет, в течение которых на этой территории могло произойти весьма значительное количество других геофизических процессов. Вторая гипотеза связана с явлениями, возникающими при малых углах входа тела в атмосферу Земли. В этом случае происходит изменение баллистики его полета в атмосфере, заключающееся в переходе от режима падения к режиму подъема. Этот эффект приводит к реализации следующих возможных сценариев события: возврат тела обратно в космическое пространство при его остаточной скорости большей второй космической; переход тела на орбиту спутника Земли при остаточной скорости большей первой космической; при меньших значениях остаточной скорости тела возвращение его через некоторое время к режиму падения и достижение им земной поверхности на значительном расстоянии от предполагаемого места падения. Предложенные гипотезы объясняют, например, отсутствие материальных следов, в том числе и кратеров в ходе поисков останков Тунгусского болида в окрестности вывала леса
Андрущенко В.А., Сызранова Н.Г. Моделирование Тунгусского явления 1908 года в рамках двух возможных гипотез. Математическое моделирование и численные методы, 2023, № 3, с. 42–61.
519.63 Молекулярно-динамическое моделирование модификации алюминия лазерной ударной волной
doi: 10.18698/2309-3684-2023-4-7492
Пластические деформации лежат в основе такой промышленной технологии, как лазерное термоупрочнение или лазерный пиннинг (LSP, laser shock peening). В данной работе методом классической молекулярной динамики исследована возможность упрочнения поверхностного слоя алюминиевого образца, облученного единичным фемтосекундным лазерным импульсом. Рассмотрены три ориентации кристаллической решетки — [1, 0, 0] (первая ориентация кристаллической решетки), [1, 1, 0] (вторая ориентация кристаллической решетки), [1, 1, 1] (третья ориентация кристаллической решетки). Проведено численное исследование влияния различных величин вложенной энергии в диапазоне от 120,98 Дж/м2 до 2540,01 Дж/м2 лазерного импульса на глубину залегания пластических деформаций, влияющих на упрочнение исследуемого материала. Построена зависимость максимальной глубины залегания пластических деформаций от вложенной энергии. Значения энергий подобранны таким образом, что пластический фронт УВ (ударной волны) останавливался до того, как достигнет правой границы моделируемого образца. Необходимость соблюдения этого условия обусловлена тем фактом, что отразившаяся от правой границы образца волна растяжения может тормозить пластический ударный фронт, выступая в роли волны разгрузки. С помощью построенной в работе зависимости максимальной глубины залегания пластических деформаций от вложенной энергии определено пороговое значение вложенной энергии, при превышении которого алюминий начинает пластически деформироваться.
Перов E.А., Жаховский В.В., Иногамов Н.А., Шепелев В.В., Фортова С.В., Долуденко А.Н.. Молекулярно-динамическое моделирование модификации алюминия лазерной ударной волной. Математическое моделирование и численные методы, 2023, № 4, с. 74-92
519.6 Численное решение уравнений смешанного типав неограниченной области на плоскости
doi: 10.18698/2309-3684-2023-3-105124
Целью является построение и реализация алгоритма нахождения численного решения задачи для уравнений смешанного типа в неограниченной области. Рассматриваются задачи, в которых исследуемый процесс описывается в некоторой ограниченной области уравнением теплопроводности или волновым, а вне нее — уравнением Лапласа. Поставлены необходимые дополнительные условия в нуле, на бесконечности и условия сопряжения на границе внутренней области. Описан алгоритм нахождения численного решения задачи с волновым уравнением в ограниченной области в одномерном и двумерном случаях, задач с уравнением теплопроводности или волновым в двумерном случае. Разностные схемы построены интегро–интерполяционным методом. Задача решается в ограниченной области. На ее границе поставлены нелокальные граничные условия так, что решение поставленной задачи в ограниченной области совпадает с проекцией на нее решения задачи в неограниченной области. При этом для решения введена искусственная граница в части области, в которой процесс описывается уравнением Лапласа. Построены итерационный алгоритм и алгоритм с нелокальным граничным условием. Представлены результаты вычислений для примеров в различных областях
Галанин М.П., Ухова А.Р. Численное решение уравнений смешанного типа в неограниченной области на плоскости. Математическое моделирование и численные методы, 2023, № 3, с. 105–124.
doi: 10.18698/2309-3684-2022-4-6380
В работе рассмотрено моделирование циклических процессов реального макромира набором двух (или большего числа) систем линейных разностных уравнений с постоянными коэффициентами. Показано, что из любого начального состояния система может быть переведена в заданное конечное состояние за заданное число шагов и, как следствие — получены условия существования циклического решения на плоскости или в пространстве любой размерности. Для циклического решения интегральные кривые систем состыковываются по непрерывности. Переключение с одной системы уравнений на другую происходит при достижении интегральными кривыми границ на фазовой плоскости (пространстве). Проведен анализ скорости сходимости таких решений к устойчивому циклу. Показана существенная зависимость хода интегральных кривых (траекторий) от начальных условий. Модель в виде авторегрессий связана с экспериментальными данными — временными рядами и аппроксимирует их по критерию минимизации среднеквадратичного отклонения. Предложенные модели могут также применяться к задачам достижения заданных значений процессов (технических, экономических) в заданный момент врем
Смирнов В.Ю., Кузнецова А.В. О моделировании циклических процессов решениями кусочно-линейных разностных уравнений с постоянными коэффициентами по экспериментальным данным в виде временных рядов. Математическое моделирование и численные методы, 2022, № 4, с. 63–80.
doi: 10.18698/2309-3684-2023-1-92111
Представлены исследования влияния класса вязкости подаваемого масла ISO VG32 и ISO VG46 в широком диапазоне скоростей ротора и рабочих зазорах на локальные и интегральные характеристики упорного подшипника скольжения с неподвижными подушками компрессора. Исследования проведены с помощью программы расчетов Sm2Px3Txτ на основе результатов численных экспериментов подшипника. Программа построена численной реализацией нестационарной периодической термоупругогидродинамической (ПТУГД) математической модели работы упорного подшипника. Результаты исследований указывают на существенное влияние класса вязкости масла на основные характеристики и температурный режим работы упорного подшипника. При замене масла ISO VG46 на более жидкое ISO VG32 происходит заметное снижение температур подушек подшипника и потерь мощности. Однако уровень этого изменения определяется задаваемым рабочим зазором между вращающимся упорным диском и подушками подшипника. Проанализировано влияние класса вязкости масла и профиля рабочей поверхности на температурный режим работы подушки. Определяются величина и расположение максимальной температуры подушки упорного подшипника, а также возможность применения на практике эталонной точки 75/75 из API-670.
Соколов Н.В., Хадиев М.Б., Федотов П.Е., Федотов Е.М. Численное исследование влияния класса вязкости смазки на работу упорного подшипника скольжения. Математическое моделирование и численные методы, 2023, No 1, с. 92–111.
519.6 Агентная модель культурных взаимодействий на неметризуемых хаусдорфовых пространствах
doi: 10.18698/2309-3684-2021-3-105119
Необходимость разработки формализованных компьютерно-ориентированных подходов к проведению междисциплинарных исследований межкультурных взаимодействий является актуальной задачей. В статье описывается подход к разработке агентных моделей межкультурных взаимодействий, основанный на использовании неметризуемых хаусдорфовых пространств с использованием генетических алгоритмов для введения динамических изменений в рассматриваемой структуре культурных агентов. В статье рассматривается прототип агентной модели, в которой состояние агентов описывается в хаусдорфовых пространствах. С помощью выбора опорных точек для каждого агента строится функция Урысона, которая позволяет вводить предпочтения агентов. Далее с помощью технологии генетических алгоритмов, удается получить тактовую динамику изменения всей системы агентов. В статье приводится описание некоторых имитационных экспериментов. Обсуждаются возможные перспективы развития данного подхода.
Белотелов Н.В, Павлов С.А. Агентная модель культурных взаимодействий на неметризуемых хаусдорфовых пространствах. Математическое моделирование и численные методы, 2021, № 3, с. 105–119.
519.87 Моделирование клеточными автоматами эффектов двойных стандартов и мягкой силы при конкуренции
doi: 10.18698/2309-3684-2021-4-12134
В среде клеточных автоматов рассматривается дискретный аналог классической модели конкуренции А. Лотки – В. Вольтерры. Известно, что в классической модели тип ее эволюции во времени определяется в первую очередь принадлежностью коэффициентов двойных стандартов тем или иным диапазонам их возможных значений. Показано, что такая же ситуация имеет место и для дискретной модели. Для классической модели имеет место эффект мягкой силы. При рассмотрении модели применительно к социальным системам, она превращается в кооперативную позиционную дифференциальную игру, ограничениями которой становится исходная система уравнений конкуренции А. Лотки – В. Вольтерры, а управлениями — коэффициенты двойных стандартов. Эффект мягкой силы состоит в том, что стороны склонны сравнивать конкурентное давление на них популяции соперника с конкурентным давлением внутри собственной популяции и могут принять меньшее давление соперника за благосклонное его к ним отношение, а большее — за враждебное проявление. Тогда как на самом деле — сравнение внешнего конкурентного давления с внутренним в данной игре не информативно — все зависит исключительно от коэффициентов двойных стандартов, которые в этой игре являются управлениями и поэтому не известны сопернику. Имитационные эксперименты с аналогом модели конкуренции, реализованным в среде клеточных автоматов, показывают, что в дискретной модели эффект мягкой силы также имеет место
Бобров В.А., Бродский Ю.И. Моделирование клеточными автоматами эффектов двойных стандартов и мягкой силы при конкуренции. Математическое моделирование и численные методы, 2021, № 4, с. 121–134.