519.8 A "mixed" model of the confrontation of numerous groups with linear dependencies on the time of the effective speed of strikes by units of the parties

Chuev V. U. (Bauman Moscow State Technical University), Dubogray I. V. (Bauman Moscow State Technical University)


doi: 10.18698/2309-3684-2022-2-102113

Using the method of dynamics of averages, a "mixed" model of numerous groupings confrontation has been developed with linear dependencies on the time of effective speeds of striking by units of the parties. An algorithm is constructed that allows to investigate the course of the process and calculate its main indicators. It is established that the use of confrontation models with constant effective speed of strikes in many cases leads to significant errors in the calculation of the main indicators of the process. The influence of a preemptive strike by one of the opposing sides on the course of the progress and the final outcome are investigated.

Alexandrov A.A., Dimitrienko Yu.I. Mathematical and computer modeling — the basis of modern engineering sciences. Mathematical modeling and Computational Methods, 2014, no. 1, pp. 3–4.
Zarubin V.S., Kuvyrkin G.N. Special features of mathematical modeling of technical instruments. Mathematical modeling and Computational Methods, 2014, no. 1, pp. 5–17.
Tkachenko P.N. Matematicheskie modeli boevykh deistviy [Mathematical models of combat operations]. Moscow, Sovetskoe radio Publ., 1969, 240 p.
Chuev Yu.V. Issledovanie operatsiy v voennom dele [Operations research in military arts]. Moscow, Voenizdat Publ., 1970, 270 p.
Venttsel E.S. Issledovanie operatsiy: zadachi, printsipy, metodologiya [Operations research: objectives, principles, methodology]. Moscow, URSS Publ., 2007, 208 p.
Ilyin V. A. Simulation of the fleet fighting forces [Modelirovanie boevyh dejstvij sil flota]. Software products and systems, 2006, no.1, pp. 23–27.
Hillier F.S., Lieberman G.J. Introduction to Operations Research. New York, McGraw-Hill, 2005, 998 p.
Winston W.L. Operations research: applications and algorithms. Duxbury Press, 2001, 128 p.
Chen X, Jing Y, Li C, Li M. Warfare command stratagem analysis for winning based on lanchester attrition models. Journal of Science and Systems Engineering, 2012, vol. 21, no. 1, pp. 94–105.
Lanchester F. Aircraft in warfare: the dawn of the fourth arm. London, Constable and Co, 1916, 243 p.
Taylor J.G. Force-on-force attrition modeling. Military Applications Section of Operations Research Society of America, 1980, 320 p.
Venttsel E.S. Teoriya veroyatnostey [Probability theory]. Moscow, KnoRus Publ., 2016, 658 p.
Pashkov N.Yu., Strogalev V.P., Chuev V.Yu. Smeshannaya model' dinamiki srednih dlya mnogochislennyh gruppirovok [A mixed model of the dynamics of averages for multiple groupings]. Oboronnaya tekhnika [Defense Technology], 2000, no. 9–10, pp. 19–21.
Dubogray I.V., Ryabtsev R.A., Chuev V.Yu. "Mixed" model of bilateral fighting of the variable effective firing rate of fighting units of sides. Izvestiya RossijskojAkademii Raketnyh i Artillerijskih Nauk [Proceedings of the Russian Academy of Rocket and Artillery Sciences], 2019, no. 3, pp. 71–76.
Chuev V.Yu., Dubograi I.V. Modeli dinamiki srednih dvustoronnih boevyh dejstvij mnogochislennyh gruppirovok [Models of dynamics of average bilateral military operations of numerous groups]. LAP LAMBERT Academie Publishing, 2014, 72 p.
Chuev V.Yu., Dubogray I.V. Probabilistic model of the battle of two similar combat units against two different types. Mathematical modeling and Computational Methods, 2020, no. 2, pp. 107–116.

Чуев В.Ю., Дубограй И.В. «Смешанная» модель противоборства многочисленных группировок при линейных зависимостях от времени эффективных скоростей воздействий единицами сторон. Математическое моделирование и численные методы, 2022, № 2, с. 102–113

Download article

Количество скачиваний: 59