doi: 10.18698/2309-3684-2021-3-7487
In this paper, the optimization of the transfer of a low–mass satellite from the Earth's orbit to the Mars orbit under a solar sail is considered. Optimization of the control of the pitch angle of the solar sail is carried out using the Pontryagin maximum principle while minimizing the flight time. In contrast to previous works on this topic, the solution of the boundary value problem, to the solution of which the maximum principle is reduced, was obtained by the false position method. The calculation program is written in the C++ programming language. Despite the computational difficulties arising when using the false position method, it was possible to achieve good convergence of the Newton method underlying the algorithm. The analysis of the accuracy of the results obtained is carried out and the possibility of using the false position method in solving such problems is shown. A comparison is made with the data of previously published works. Despite some assumptions used in the development of the calculation algorithm, the work has its value in terms of assessing the possibility of using the false position method, which gives the most accurate numerical optimization results.
Мозжорина Т.Ю., Рахманкулов Д.А. Моделирование и оптимизация управлением спутника малой массы при перелете с орбиты Земли на орбиту Марса под солнечным парусом. Математическое моделирование и численные методы, 2021, № 3, с. 74–87.